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Abstract

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and
extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for
optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliabil-
ity, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitiv-
ity/variance analysis with design of experiments and parameter study methods. These capabilities may be used
on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer
nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement
abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flex-
ible and extensible problem-solving environment for design and performance analysis of computational models
on high performance computers.

This report serves as a theoretical manual for selected algorithms implemented within the DAKOTA software.
It is not intended as a comprehensive theoretical treatment, since a number of existing texts cover general opti-
mization theory, statistical analysis, and other introductory topics. Rather, this manual is intended to summarize
a set of DAKOTA-related research publications in the areas of surrogate-based optimization, uncertainty quantifi-
cation, and optimization under uncertainty that provide the foundation for many of DAKOTA’s iterative analysis
capabilities.
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Chapter 1

Reliability Methods

1.1 Local Reliability Methods

Local reliability methods include the Mean Value method and the family of most probable point (MPP) search
methods. Each of these methods is gradient-based, employing local approximations and/or local optimization
methods.

1.1.1 Mean Value

The Mean Value method (MV, also known as MVFOSM in [38]) is the simplest, least-expensive reliability method
because it estimates the response means, response standard deviations, and all CDF/CCDF response-probability-
reliability levels from a single evaluation of response functions and their gradients at the uncertain variable means.
This approximation can have acceptable accuracy when the response functions are nearly linear and their distribu-
tions are approximately Gaussian, but can have poor accuracy in other situations. The expressions for approximate
response mean µg , approximate response variance σ2

g , response target to approximate probability/reliability level
mapping (z̄ → p, β), and probability/reliability target to approximate response level mapping (p̄, β̄ → z) are

µg = g(µx) (1.1)

σ2
g =

∑
i

∑
j

Cov(i, j)
dg

dxi
(µx)

dg

dxj
(µx) (1.2)

z̄ → β : βCDF =
µg − z̄

σg
, βCCDF =

z̄ − µg
σg

(1.3)

β̄ → z : z = µg − σgβ̄CDF, z = µg + σgβ̄CCDF (1.4)

respectively, where x are the uncertain values in the space of the original uncertain variables (“x-space”), g(x) is
the limit state function (the response function for which probability-response level pairs are needed), and βCDF

and βCCDF are the CDF and CCDF reliability indices, respectively.

With the introduction of second-order limit state information, MVSOSM calculates a second-order mean as

µg = g(µx) +
1
2

∑
i

∑
j

Cov(i, j)
d2g

dxidxj
(µx) (1.5)
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This is commonly combined with a first-order variance (Equation 1.2), since second-order variance involves
higher order distribution moments (skewness, kurtosis) [38] which are often unavailable.

The first-order CDF probability p(g ≤ z), first-order CCDF probability p(g > z), βCDF, and βCCDF are related
to one another through

p(g ≤ z) = Φ(−βCDF) (1.6)
p(g > z) = Φ(−βCCDF) (1.7)

βCDF = −Φ−1(p(g ≤ z)) (1.8)
βCCDF = −Φ−1(p(g > z)) (1.9)
βCDF = −βCCDF (1.10)

p(g ≤ z) = 1− p(g > z) (1.11)

where Φ() is the standard normal cumulative distribution function. A common convention in the literature is to
define g in such a way that the CDF probability for a response level z of zero (i.e., p(g ≤ 0)) is the response metric
of interest. DAKOTA is not restricted to this convention and is designed to support CDF or CCDF mappings for
general response, probability, and reliability level sequences.

With the Mean Value method, it is possible to obtain importance factors indicating the relative importance of
input variables. The importance factors can be viewed as an extension of linear sensitivity analysis combining
deterministic gradient information with input uncertainty information, i.e. input variable standard deviations. The
accuracy of the importance factors is contingent of the validity of the linear approximation used to approximate
the true response functions. The importance factors are determined as:

ImpFactori = (
σxi

σg

dg

dxi
(µx))2 (1.12)

1.1.2 MPP Search Methods

All other local reliability methods solve an equality-constrained nonlinear optimization problem to compute a
most probable point (MPP) and then integrate about this point to compute probabilities. The MPP search is
performed in uncorrelated standard normal space (“u-space”) since it simplifies the probability integration: the
distance of the MPP from the origin has the meaning of the number of input standard deviations separating the
mean response from a particular response threshold. The transformation from correlated non-normal distribu-
tions (x-space) to uncorrelated standard normal distributions (u-space) is denoted as u = T (x) with the reverse
transformation denoted as x = T−1(u). These transformations are nonlinear in general, and possible approaches
include the Rosenblatt [59], Nataf [17], and Box-Cox [8] transformations. The nonlinear transformations may
also be linearized, and common approaches for this include the Rackwitz-Fiessler [55] two-parameter equivalent
normal and the Chen-Lind [12] and Wu-Wirsching [73] three-parameter equivalent normals. DAKOTA employs
the Nataf nonlinear transformation which is suitable for the common case when marginal distributions and a
correlation matrix are provided, but full joint distributions are not known1. This transformation occurs in the fol-
lowing two steps. To transform between the original correlated x-space variables and correlated standard normals
(“z-space”), a CDF matching condition is applied for each of the marginal distributions:

Φ(zi) = F (xi) (1.13)

where F () is the cumulative distribution function of the original probability distribution. Then, to transform
between correlated z-space variables and uncorrelated u-space variables, the Cholesky factor L of a modified

1If joint distributions are known, then the Rosenblatt transformation is preferred.
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1.1. LOCAL RELIABILITY METHODS 9

correlation matrix is used:
z = Lu (1.14)

where the original correlation matrix for non-normals in x-space has been modified to represent the corresponding
“warped” correlation in z-space [17].

The forward reliability analysis algorithm of computing CDF/CCDF probability/reliability levels for specified
response levels is called the reliability index approach (RIA), and the inverse reliability analysis algorithm of
computing response levels for specified CDF/CCDF probability/reliability levels is called the performance mea-
sure approach (PMA) [66]. The differences between the RIA and PMA formulations appear in the objective
function and equality constraint formulations used in the MPP searches. For RIA, the MPP search for achieving
the specified response level z̄ is formulated as computing the minimum distance in u-space from the origin to the
z̄ contour of the limit state response function:

minimize uTu

subject to G(u) = z̄ (1.15)

and for PMA, the MPP search for achieving the specified reliability/probability level β̄, p̄ is formulated as com-
puting the minimum/maximum response function value corresponding to a prescribed distance from the origin in
u-space:

minimize ±G(u)
subject to uTu = β̄2 (1.16)

where u is a vector centered at the origin in u-space and g(x) ≡ G(u) by definition. In the RIA case, the
optimal MPP solution u∗ defines the reliability index from β = ±‖u∗‖2, which in turn defines the CDF/CCDF
probabilities (using Equations 1.6-1.7 in the case of first-order integration). The sign of β is defined by

G(u∗) > G(0) : βCDF < 0, βCCDF > 0 (1.17)
G(u∗) < G(0) : βCDF > 0, βCCDF < 0 (1.18)

where G(0) is the median limit state response computed at the origin in u-space2 (where βCDF = βCCDF = 0 and
first-order p(g ≤ z) = p(g > z) = 0.5). In the PMA case, the sign applied to G(u) (equivalent to minimizing or
maximizing G(u)) is similarly defined by β̄

β̄CDF < 0, β̄CCDF > 0 : maximize G(u) (1.19)
β̄CDF > 0, β̄CCDF < 0 : minimize G(u) (1.20)

and the limit state at the MPP (G(u∗)) defines the desired response level result.

1.1.2.1 Limit state approximations

There are a variety of algorithmic variations that are available for use within RIA/PMA reliability analyses. First,
one may select among several different limit state approximations that can be used to reduce computational ex-
pense during the MPP searches. Local, multipoint, and global approximations of the limit state are possible. [20]
investigated local first-order limit state approximations, and [21] investigated local second-order and multipoint
approximations. These techniques include:

2It is not necessary to explicitly compute the median response since the sign of the inner product 〈u∗,∇uG〉 can be used to determine the
orientation of the optimal response with respect to the median response.
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10 CHAPTER 1. RELIABILITY METHODS

1. a single Taylor series per response/reliability/probability level in x-space centered at the uncertain variable
means. The first-order approach is commonly known as the Advanced Mean Value (AMV) method:

g(x) ∼= g(µx) +∇xg(µx)T (x− µx) (1.21)

and the second-order approach has been named AMV2:

g(x) ∼= g(µx) +∇xg(µx)T (x− µx) +
1
2
(x− µx)T∇2

xg(µx)(x− µx) (1.22)

2. same as AMV/AMV2, except that the Taylor series is expanded in u-space. The first-order option has been
termed the u-space AMV method:

G(u) ∼= G(µu) +∇uG(µu)T (u− µu) (1.23)

where µu = T (µx) and is nonzero in general, and the second-order option has been named the u-space
AMV2 method:

G(u) ∼= G(µu) +∇uG(µu)T (u− µu) +
1
2
(u− µu)T∇2

uG(µu)(u− µu) (1.24)

3. an initial Taylor series approximation in x-space at the uncertain variable means, with iterative expansion
updates at each MPP estimate (x∗) until the MPP converges. The first-order option is commonly known as
AMV+:

g(x) ∼= g(x∗) +∇xg(x∗)T (x− x∗) (1.25)

and the second-order option has been named AMV2+:

g(x) ∼= g(x∗) +∇xg(x∗)T (x− x∗) +
1
2
(x− x∗)T∇2

xg(x
∗)(x− x∗) (1.26)

4. same as AMV+/AMV2+, except that the expansions are performed in u-space. The first-order option has
been termed the u-space AMV+ method.

G(u) ∼= G(u∗) +∇uG(u∗)T (u− u∗) (1.27)

and the second-order option has been named the u-space AMV2+ method:

G(u) ∼= G(u∗) +∇uG(u∗)T (u− u∗) +
1
2
(u− u∗)T∇2

uG(u∗)(u− u∗) (1.28)

5. a multipoint approximation in x-space. This approach involves a Taylor series approximation in intermedi-
ate variables where the powers used for the intermediate variables are selected to match information at the
current and previous expansion points. Based on the two-point exponential approximation concept (TPEA,
[27]), the two-point adaptive nonlinearity approximation (TANA-3, [78]) approximates the limit state as:

g(x) ∼= g(x2) +
n∑
i=1

∂g

∂xi
(x2)

x1−pi

i,2

pi
(xpi

i − xpi

i,2) +
1
2
ε(x)

n∑
i=1

(xpi

i − xpi

i,2)
2 (1.29)

where n is the number of uncertain variables and:

pi = 1 + ln

[
∂g
∂xi

(x1)
∂g
∂xi

(x2)

] /
ln

[
xi,1
xi,2

]
(1.30)

ε(x) =
H∑n

i=1(x
pi

i − xpi

i,1)2 +
∑n
i=1(x

pi

i − xpi

i,2)2
(1.31)

H = 2

[
g(x1)− g(x2)−

n∑
i=1

∂g

∂xi
(x2)

x1−pi

i,2

pi
(xpi

i,1 − xpi

i,2)

]
(1.32)
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1.1. LOCAL RELIABILITY METHODS 11

and x2 and x1 are the current and previous MPP estimates in x-space, respectively. Prior to the availability
of two MPP estimates, x-space AMV+ is used.

6. a multipoint approximation in u-space. The u-space TANA-3 approximates the limit state as:

G(u) ∼= G(u2) +
n∑
i=1

∂G

∂ui
(u2)

u1−pi

i,2

pi
(upi

i − upi

i,2) +
1
2
ε(u)

n∑
i=1

(upi

i − upi

i,2)
2 (1.33)

where:

pi = 1 + ln

[
∂G
∂ui

(u1)
∂G
∂ui

(u2)

] /
ln

[
ui,1
ui,2

]
(1.34)

ε(u) =
H∑n

i=1(u
pi

i − upi

i,1)2 +
∑n
i=1(u

pi

i − upi

i,2)2
(1.35)

H = 2

[
G(u1)−G(u2)−

n∑
i=1

∂G

∂ui
(u2)

u1−pi

i,2

pi
(upi

i,1 − upi

i,2)

]
(1.36)

and u2 and u1 are the current and previous MPP estimates in u-space, respectively. Prior to the availability
of two MPP estimates, u-space AMV+ is used.

7. the MPP search on the original response functions without the use of any approximations. Combining this
option with first-order and second-order integration approaches (see next section) results in the traditional
first-order and second-order reliability methods (FORM and SORM).

The Hessian matrices in AMV2 and AMV2+ may be available analytically, estimated numerically, or approxi-
mated through quasi-Newton updates. The selection between x-space or u-space for performing approximations
depends on where the approximation will be more accurate, since this will result in more accurate MPP esti-
mates (AMV, AMV2) or faster convergence (AMV+, AMV2+, TANA). Since this relative accuracy depends on
the forms of the limit state g(x) and the transformation T (x) and is therefore application dependent in general,
DAKOTA supports both options. A concern with approximation-based iterative search methods (i.e., AMV+,
AMV2+ and TANA) is the robustness of their convergence to the MPP. It is possible for the MPP iterates to os-
cillate or even diverge. However, to date, this occurrence has been relatively rare, and DAKOTA contains checks
that monitor for this behavior. Another concern with TANA is numerical safeguarding (e.g., the possibility of
raising negative xi or ui values to nonintegral pi exponents in Equations 1.29, 1.31-1.33, and 1.35-1.36). Safe-
guarding involves offseting negative xi or ui and, for potential numerical difficulties with the logarithm ratios in
Equations 1.30 and 1.34, reverting to either the linear (pi = 1) or reciprocal (pi = −1) approximation based on
which approximation has lower error in ∂g

∂xi
(x1) or ∂G

∂ui
(u1).

1.1.2.2 Probability integrations

The second algorithmic variation involves the integration approach for computing probabilities at the MPP, which
can be selected to be first-order (Equations 1.6-1.7) or second-order integration. Second-order integration involves
applying a curvature correction [9, 40, 41]. Breitung applies a correction based on asymptotic analysis [9]:

p = Φ(−βp)
n−1∏
i=1

1√
1 + βpκi

(1.37)

where κi are the principal curvatures of the limit state function (the eigenvalues of an orthonormal transformation
of ∇2

uG, taken positive for a convex limit state) and βp ≥ 0 (a CDF or CCDF probability correction is selected to
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12 CHAPTER 1. RELIABILITY METHODS

obtain the correct sign for βp). An alternate correction in [40] is consistent in the asymptotic regime (βp → ∞)
but does not collapse to first-order integration for βp = 0:

p = Φ(−βp)
n−1∏
i=1

1√
1 + ψ(−βp)κi

(1.38)

where ψ() = φ()
Φ() and φ() is the standard normal density function. [41] applies further corrections to Equation 1.38

based on point concentration methods. At this time, all three approaches are available within the code, but the
Hohenbichler-Rackwitz correction is used by default (switching the correction is a compile-time option in the
source code and has not not currently been exposed in the input specification).

1.1.2.3 Hessian approximations

To use a second-order Taylor series or a second-order integration when second-order information (∇2
xg, ∇2

uG,
and/or κ) is not directly available, one can estimate the missing information using finite differences or approximate
it through use of quasi-Newton approximations. These procedures will often be needed to make second-order
approaches practical for engineering applications.

In the finite difference case, numerical Hessians are commonly computed using either first-order forward differ-
ences of gradients using

∇2g(x) ∼=
∇g(x + hei)−∇g(x)

h
(1.39)

to estimate the ith Hessian column when gradients are analytically available, or second-order differences of func-
tion values using

∇2g(x) ∼= g(x+hei+hej)−g(x+hei−hej)−g(x−hei+hej)+g(x−hei−hej)
4h2 (1.40)

to estimate the ijth Hessian term when gradients are not directly available. This approach has the advantage
of locally-accurate Hessians for each point of interest (which can lead to quadratic convergence rates in discrete
Newton methods), but has the disadvantage that numerically estimating each of the matrix terms can be expensive.

Quasi-Newton approximations, on the other hand, do not reevaluate all of the second-order information for ev-
ery point of interest. Rather, they accumulate approximate curvature information over time using secant up-
dates. Since they utilize the existing gradient evaluations, they do not require any additional function evaluations
for evaluating the Hessian terms. The quasi-Newton approximations of interest include the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) update

Bk+1 = Bk −
BksksTkBk

sTkBksk
+

ykyTk
yTk sk

(1.41)

which yields a sequence of symmetric positive definite Hessian approximations, and the Symmetric Rank 1 (SR1)
update

Bk+1 = Bk +
(yk −Bksk)(yk −Bksk)T

(yk −Bksk)T sk
(1.42)

which yields a sequence of symmetric, potentially indefinite, Hessian approximations. Bk is the kth approxima-
tion to the Hessian ∇2g, sk = xk+1 − xk is the step and yk = ∇gk+1 − ∇gk is the corresponding yield in the
gradients. The selection of BFGS versus SR1 involves the importance of retaining positive definiteness in the
Hessian approximations; if the procedure does not require it, then the SR1 update can be more accurate if the true
Hessian is not positive definite. Initial scalings for B0 and numerical safeguarding techniques (damped BFGS,
update skipping) are described in [21].
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1.2. GLOBAL RELIABILITY METHODS 13

1.1.2.4 Optimization algorithms

The next algorithmic variation involves the optimization algorithm selection for solving Eqs. 1.15 and 1.16. The
Hasofer-Lind Rackwitz-Fissler (HL-RF) algorithm [38] is a classical approach that has been broadly applied.
It is a Newton-based approach lacking line search/trust region globalization, and is generally regarded as com-
putationally efficient but occasionally unreliable. DAKOTA takes the approach of employing robust, general-
purpose optimization algorithms with provable convergence properties. In particular, we employ the sequential
quadratic programming (SQP) and nonlinear interior-point (NIP) optimization algorithms from the NPSOL [34]
and OPT++ [47] libraries, respectively.

1.1.2.5 Warm Starting of MPP Searches

The final algorithmic variation for local reliability methods involves the use of warm starting approaches for
improving computational efficiency. [20] describes the acceleration of MPP searches through warm starting with
approximate iteration increment, with z/p/β level increment, and with design variable increment. Warm started
data includes the expansion point and associated response values and the MPP optimizer initial guess. Projections
are used when an increment in z/p/β level or design variables occurs. Warm starts were consistently effective in
[20], with greater effectiveness for smaller parameter changes, and are used by default in DAKOTA.

1.2 Global Reliability Methods

Local reliability methods, while computationally efficient, have well-known failure mechanisms. When con-
fronted with a limit state function that is nonsmooth, local gradient-based optimizers may stall due to gradient
inaccuracy and fail to converge to an MPP. Moreover, if the limit state is multimodal (multiple MPPs), then a
gradient-based local method can, at best, locate only one local MPP solution. Finally, a linear (Eqs. 1.6–1.7) or
parabolic (Eqs. 1.37–1.38) approximation to the limit state at this MPP may fail to adequately capture the contour
of a highly nonlinear limit state.

A reliability analysis method that is both efficient when applied to expensive response functions and accurate for
a response function of any arbitrary shape is needed. This section develops such a method based on efficient
global optimization [44] (EGO) to the search for multiple points on or near the limit state throughout the random
variable space. By locating multiple points on the limit state, more complex limit states can be accurately modeled,
resulting in a more accurate assessment of the reliability. It should be emphasized here that these multiple points
exist on a single limit state. Because of its roots in efficient global optimization, this method of reliability analysis
is called efficient global reliability analysis (EGRA) [7]. The following two subsections describe two capabilities
that are incorporated into the EGRA algorithm: importance sampling and EGO.

1.2.1 Importance Sampling

An alternative to MPP search methods is to directly perform the probability integration numerically by sampling
the response function. Sampling methods do not rely on a simplifying approximation to the shape of the limit
state, so they can be more accurate than FORM and SORM, but they can also be prohibitively expensive because
they generally require a large number of response function evaluations. Importance sampling methods reduce
this expense by focusing the samples in the important regions of the uncertain space. They do this by centering
the sampling density function at the MPP rather than at the mean. This ensures the samples will lie the region
of interest, thus increasing the efficiency of the sampling method. Adaptive importance sampling (AIS) further
improves the efficiency by adaptively updating the sampling density function. Multimodal adaptive importance
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sampling [18, 80] is a variation of AIS that allows for the use of multiple sampling densities making it better
suited for cases where multiple sections of the limit state are highly probable.

Note that importance sampling methods require that the location of at least one MPP be known because it is used
to center the initial sampling density. However, current gradient-based, local search methods used in MPP search
may fail to converge or may converge to poor solutions for highly nonlinear problems, possibly making these
methods inapplicable. As the next section describes, EGO is a global optimization method that does not depend
on the availability of accurate gradient information, making convergence more reliable for nonsmooth response
functions. Moreover, EGO has the ability to locate multiple failure points, which would provide multiple starting
points and thus a good multimodal sampling density for the initial steps of multimodal AIS. The resulting Gaussian
process model is accurate in the vicinity of the limit state, thereby providing an inexpensive surrogate that can be
used to provide response function samples. As will be seen, using EGO to locate multiple points along the limit
state, and then using the resulting Gaussian process model to provide function evaluations in multimodal AIS for
the probability integration, results in an accurate and efficient reliability analysis tool.

1.2.2 Efficient Global Optimization

Efficient Global Optimization (EGO) was developed to facilitate the unconstrained minimization of expensive
implicit response functions. The method builds an initial Gaussian process model as a global surrogate for the
response function, then intelligently selects additional samples to be added for inclusion in a new Gaussian process
model in subsequent iterations. The new samples are selected based on how much they are expected to improve
the current best solution to the optimization problem. When this expected improvement is acceptably small, the
globally optimal solution has been found. The application of this methodology to equality-constrained reliability
analysis is the primary contribution of EGRA.

Efficient global optimization was originally proposed by Jones et al. [44] and has been adapted into similar
methods such as sequential kriging optimization (SKO) [43]. The main difference between SKO and EGO lies
within the specific formulation of what is known as the expected improvement function (EIF), which is the feature
that sets all EGO/SKO-type methods apart from other global optimization methods. The EIF is used to select the
location at which a new training point should be added to the Gaussian process model by maximizing the amount
of improvement in the objective function that can be expected by adding that point. A point could be expected
to produce an improvement in the objective function if its predicted value is better than the current best solution,
or if the uncertainty in its prediction is such that the probability of it producing a better solution is high. Because
the uncertainty is higher in regions of the design space with fewer observations, this provides a balance between
exploiting areas of the design space that predict good solutions, and exploring areas where more information is
needed.

The general procedure of these EGO-type methods is:

1. Build an initial Gaussian process model of the objective function.

2. Find the point that maximizes the EIF. If the EIF value at this point is sufficiently small, stop.

3. Evaluate the objective function at the point where the EIF is maximized. Update the Gaussian process
model using this new point. Go to Step 2.

The following sections discuss the construction of the Gaussian process model used, the form of the EIF, and then
a description of how that EIF is modified for application to reliability analysis.
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1.2.2.1 Gaussian Process Model

Gaussian process (GP) models are set apart from other surrogate models because they provide not just a predicted
value at an unsampled point, but also and estimate of the prediction variance. This variance gives an indication of
the uncertainty in the GP model, which results from the construction of the covariance function. This function is
based on the idea that when input points are near one another, the correlation between their corresponding outputs
will be high. As a result, the uncertainty associated with the model’s predictions will be small for input points
which are near the points used to train the model, and will increase as one moves further from the training points.

It is assumed that the true response function being modeled G(u) can be described by: [16]

G(u) = h(u)Tβ + Z(u) (1.43)

where h() is the trend of the model, β is the vector of trend coefficients, and Z() is a stationary Gaussian process
with zero mean (and covariance defined below) that describes the departure of the model from its underlying trend.
The trend of the model can be assumed to be any function, but taking it to be a constant value has been reported to
be generally sufficient. [60] For the work presented here, the trend is assumed constant and β is taken as simply
the mean of the responses at the training points. The covariance between outputs of the Gaussian process Z() at
points a and b is defined as:

Cov [Z(a), Z(b)] = σ2
ZR(a,b) (1.44)

where σ2
Z is the process variance and R() is the correlation function. There are several options for the correlation

function, but the squared-exponential function is common [60], and is used here for R():

R(a,b) = exp

[
−

d∑
i=1

θi(ai − bi)2
]

(1.45)

where d represents the dimensionality of the problem (the number of random variables), and θi is a scale param-
eter that indicates the correlation between the points within dimension i. A large θi is representative of a short
correlation length.

The expected value µG() and variance σ2
G() of the GP model prediction at point u are:

µG(u) = h(u)Tβ + r(u)TR−1(g − Fβ) (1.46)

σ2
G(u) = σ2

Z −
[
h(u)T r(u)T

] [
0 FT

F R

]−1 [
h(u)
r(u)

]
(1.47)

where r(u) is a vector containing the covariance between u and each of the n training points (defined by Eq. 1.44),
R is an n × n matrix containing the correlation between each pair of training points, g is the vector of response
outputs at each of the training points, and F is an n× q matrix with rows h(ui)T (the trend function for training
point i containing q terms; for a constant trend q=1). This form of the variance accounts for the uncertainty in the
trend coefficients β, but assumes that the parameters governing the covariance function (σ2

Z and θ) have known
values.

The parameters σ2
Z and θ are determined through maximum likelihood estimation. This involves taking the log of

the probability of observing the response values g given the covariance matrix R, which can be written as: [60]

log [p(g|R)] = − 1
n

log|R| − log(σ̂2
Z) (1.48)

where |R| indicates the determinant of R, and σ̂2
Z is the optimal value of the variance given an estimate of θ and

is defined by:

σ̂2
Z =

1
n

(g − Fβ)TR−1(g − Fβ) (1.49)

Maximizing Eq. 1.48 gives the maximum likelihood estimate of θ, which in turn defines σ2
Z .
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1.2.2.2 Expected Improvement Function

The expected improvement function is used to select the location at which a new training point should be added.
The EIF is defined as the expectation that any point in the search space will provide a better solution than the
current best solution based on the expected values and variances predicted by the GP model. An important feature
of the EIF is that it provides a balance between exploiting areas of the design space where good solutions have
been found, and exploring areas of the design space where the uncertainty is high. First, recognize that at any
point in the design space, the GP prediction Ĝ() is a Gaussian distribution:

Ĝ(u) ∼ N [µG(u), σG(u)] (1.50)

where the mean µG() and the variance σ2
G() were defined in Eqs. 1.46 and 1.47, respectively. The EIF is defined

as: [44]
EI

(
Ĝ(u)

)
≡ E

[
max

(
G(u∗)− Ĝ(u), 0

)]
(1.51)

whereG(u∗) is the current best solution chosen from among the true function values at the training points (hence-
forth referred to as simply G∗). This expectation can then be computed by integrating over the distribution Ĝ(u)
with G∗ held constant:

EI
(
Ĝ(u)

)
=

∫ G∗

−∞
(G∗ −G) Ĝ(u) dG (1.52)

where G is a realization of Ĝ. This integral can be expressed analytically as: [44]

EI
(
Ĝ(u)

)
= (G∗ − µG) Φ

(
G∗ − µG
σG

)
+ σG φ

(
G∗ − µG
σG

)
(1.53)

where it is understood that µG and σG are functions of u.

The point at which the EIF is maximized is selected as an additional training point. With the new training point
added, a new GP model is built and then used to construct another EIF, which is then used to choose another new
training point, and so on, until the value of the EIF at its maximized point is below some specified tolerance. In
Ref. [43] this maximization is performed using a Nelder-Mead simplex approach, which is a local optimization
method. Because the EIF is often highly multimodal [44] it is expected that Nelder-Mead may fail to converge
to the true global optimum. In Ref. [44], a branch-and-bound technique for maximizing the EIF is used, but was
found to often be too expensive to run to convergence. In DAKOTA, an implementation of the DIRECT global
optimization algorithm is used [30].

It is important to understand how the use of this EIF leads to optimal solutions. Eq. 1.53 indicates how much the
objective function value at x is expected to be less than the predicted value at the current best solution. Because
the GP model provides a Gaussian distribution at each predicted point, expectations can be calculated. Points with
good expected values and even a small variance will have a significant expectation of producing a better solution
(exploitation), but so will points that have relatively poor expected values and greater variance (exploration).

The application of EGO to reliability analysis, however, is made more complicated due to the inclusion of equality
constraints (see Eqs. 1.15-1.16). For inverse reliability analysis, this extra complication is small. The response
being modeled by the GP is the objective function of the optimization problem (see Eq. 1.16) and the deterministic
constraint might be handled through the use of a merit function, thereby allowing EGO to solve this equality-
constrained optimization problem. Here the problem lies in the interpretation of the constraint for multimodal
problems as mentioned previously. In the forward reliability case, the response function appears in the constraint
rather than the objective. Here, the maximization of the EIF is inappropriate because feasibility is the main
concern. This application is therefore a significant departure from the original objective of EGO and requires a
new formulation. For this problem, the expected feasibility function is introduced.
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1.2.2.3 Expected Feasibility Function

The expected improvement function provides an indication of how much the true value of the response at a point
can be expected to be less than the current best solution. It therefore makes little sense to apply this to the forward
reliability problem where the goal is not to minimize the response, but rather to find where it is equal to a specified
threshold value. The expected feasibility function (EFF) is introduced here to provide an indication of how well
the true value of the response is expected to satisfy the equality constraint G(u) = z̄. Inspired by the contour
estimation work in [56], this expectation can be calculated in a similar fashion as Eq. 1.52 by integrating over a
region in the immediate vicinity of the threshold value z̄ ± ε:

EF
(
Ĝ(u)

)
=

∫ z+ε

z−ε

[
ε− |z̄ −G|

]
Ĝ(u) dG (1.54)

where G denotes a realization of the distribution Ĝ, as before. Allowing z+ and z− to denote z̄ ± ε, respectively,
this integral can be expressed analytically as:

EF
(
Ĝ(u)

)
= (µG − z̄)

[
2 Φ

(
z̄ − µG
σG

)
− Φ

(
z− − µG
σG

)
− Φ

(
z+ − µG
σG

)]
− σG

[
2φ

(
z̄ − µG
σG

)
− φ

(
z− − µG
σG

)
− φ

(
z+ − µG
σG

)]
+ ε

[
Φ

(
z+ − µG
σG

)
− Φ

(
z− − µG
σG

)]
(1.55)

where ε is proportional to the standard deviation of the GP predictor (ε ∝ σG). In this case, z−, z+, µG, σG, and
ε are all functions of the location u, while z̄ is a constant. Note that the EFF provides the same balance between
exploration and exploitation as is captured in the EIF. Points where the expected value is close to the threshold
(µG≈ z̄) and points with a large uncertainty in the prediction will have large expected feasibility values.
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Chapter 2

Stochastic Expansion Methods

This chapter explores two approaches to forming stochastic expansions, the polynomial chaos expansion (PCE)
and stochastic collocation (SC). Both approaches capture the functional relationship between a set of output
response metrics and a set of input random variables.

2.1 Orthogonal polynomials in the Askey scheme

Table 2.1 shows the set of classical orthogonal polynomials which provide an optimal basis for different continu-
ous probability distribution types. It is derived from the family of hypergeometric orthogonal polynomials known
as the Askey scheme [5], for which the Hermite polynomials originally employed by Wiener [70] are a subset.
The optimality of these basis selections derives from their orthogonality with respect to weighting functions that
correspond to the probability density functions (PDFs) of the continuous distributions when placed in a standard
form. The density and weighting functions differ by a constant factor due to the requirement that the integral of
the PDF over the support range is one.

Table 2.1: Linkage between standard forms of continuous probability distributions and Askey scheme of contin-
uous hyper-geometric polynomials.

Distribution Density function Polynomial Weight function Support range

Normal 1√
2π
e
−x2

2 Hermite Hen(x) e
−x2

2 [−∞,∞]
Uniform 1

2 Legendre Pn(x) 1 [−1, 1]

Beta (1−x)α(1+x)β

2α+β+1B(α+1,β+1)
Jacobi P (α,β)

n (x) (1− x)α(1 + x)β [−1, 1]
Exponential e−x Laguerre Ln(x) e−x [0,∞]

Gamma xαe−x

Γ(α+1) Generalized Laguerre L(α)
n (x) xαe−x [0,∞]

Note that Legendre is a special case of Jacobi for α = β = 0, Laguerre is a special case of generalized Laguerre
for α = 0, Γ(a) is the Gamma function which extends the factorial function to continuous values, and B(a, b) is
the Beta function defined as B(a, b) = Γ(a)Γ(b)

Γ(a+b) . Some care is necessary when specifying the α and β parameters
for the Jacobi and generalized Laguerre polynomials since the orthogonal polynomial conventions [1] differ from
the common statistical PDF conventions. The former conventions are used in Table 2.1.
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2.2 Numerically generated orthogonal polynomials

If all random inputs can be described using independent normal, uniform, exponential, beta, and gamma distribu-
tions, then Askey polynomials can be directly applied. If correlation or other distribution types are present, then
additional techniques are required. One solution is to employ nonlinear variable transformations as described in
Section 2.6 such that an Askey basis can be applied in the transformed space. This can be effective as shown
in [26], but convergence rates are typically degraded. In addition, correlation coefficients are warped by the non-
linear transformation [17], and simple expressions for these transformed correlation values are not always readily
available. An alternative is to numerically generate the orthogonal polynomials (using Gauss-Wigert [61], dis-
cretized Stieltjes [31], Chebyshev [31], or Gramm-Schmidt [71] approaches) and then compute their Gauss points
and weights (using the Golub-Welsch [37] tridiagonal eigensolution). These solutions are optimal for given
random variable sets having arbitrary probability density functions and eliminate the need to induce additional
nonlinearity through variable transformations, but performing this process for general joint density functions with
correlation is a topic of ongoing research (refer to Section 2.6 for additional details).

2.3 Interpolation polynomials

Lagrange polynomials interpolate a set of points in a single dimension using the functional form

Lj =
m∏
k=1
k 6=j

ξ − ξk
ξj − ξk

(2.1)

where it is evident that Lj is 1 at ξ = ξj , is 0 for each of the points ξ = ξk, and has order m− 1.

For interpolation of a response function R in one dimension over m points, the expression

R(ξ) ∼=
m∑
j=1

r(ξj)Lj(ξ) (2.2)

reproduces the response values r(ξj) at the interpolation points and smoothly interpolates between these values
at other points. For interpolation in multiple dimensions, a tensor-product approach is used wherein

R(ξ) ∼=
mi1∑
j1=1

· · ·
min∑
jn=1

r
(
ξi1j1 , . . . , ξ

in
jn

) (
Li1j1 ⊗ · · · ⊗ Linjn

)
=

Np∑
j=1

rj(ξ)Lj(ξ) (2.3)

where i = (m1,m2, · · · ,mn) are the number of nodes used in the n-dimensional interpolation and ξij is the j-th
point in the i-th direction. As will be seen later, interpolation on sparse grids involves a summation of these tensor
products with varying i levels.

2.4 Generalized Polynomial Chaos

The set of polynomials from 2.1 and 2.2 are used as an orthogonal basis to approximate the functional form
between the stochastic response output and each of its random inputs. The chaos expansion for a response R
takes the form

R = a0B0 +
∞∑
i1=1

ai1B1(ξi1) +
∞∑
i1=1

i1∑
i2=1

ai1i2B2(ξi1 , ξi2) +
∞∑
i1=1

i1∑
i2=1

i2∑
i3=1

ai1i2i3B3(ξi1 , ξi2 , ξi3) + ... (2.4)
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where the random vector dimension is unbounded and each additional set of nested summations indicates an
additional order of polynomials in the expansion. This expression can be simplified by replacing the order-based
indexing with a term-based indexing

R =
∞∑
j=0

αjΨj(ξ) (2.5)

where there is a one-to-one correspondence between ai1i2...in and αj and betweenBn(ξi1 , ξi2 , ..., ξin) and Ψj(ξ).
Each of the Ψj(ξ) are multivariate polynomials which involve products of the one-dimensional polynomials. For
example, a multivariate Hermite polynomial B(ξ) of order n is defined from

Bn(ξi1 , ..., ξin) = e
1
2 ξT ξ(−1)n

∂n

∂ξi1 ...∂ξin
e−

1
2 ξT ξ (2.6)

which can be shown to be a product of one-dimensional Hermite polynomials involving a multi-index mj
i :

Bn(ξi1 , ..., ξin) = Ψj(ξ) =
n∏
i=1

ψmj
i
(ξi) (2.7)

In the case of a mixed basis, the same multi-index definition is employed although the one-dimensional polyno-
mials ψmj

i
are heterogeneous in type.

2.4.1 Expansion truncation and tailoring

In practice, one truncates the infinite expansion at a finite number of random variables and a finite expansion order

R ∼=
P∑
j=0

αjΨj(ξ) (2.8)

Traditionally, the polynomial chaos expansion includes a complete basis of polynomials up to a fixed total-order
specification. That is, for an expansion of total order p involving n random variables, the multi-index defining the
set of Ψj is constrained by

n∑
i=1

mj
i ≤ p (2.9)

For example, the multidimensional basis polynomials for a second-order expansion over two random dimensions
are

Ψ0(ξ) = ψ0(ξ1) ψ0(ξ2) = 1
Ψ1(ξ) = ψ1(ξ1) ψ0(ξ2) = ξ1

Ψ2(ξ) = ψ0(ξ1) ψ1(ξ2) = ξ2

Ψ3(ξ) = ψ2(ξ1) ψ0(ξ2) = ξ21 − 1
Ψ4(ξ) = ψ1(ξ1) ψ1(ξ2) = ξ1ξ2

Ψ5(ξ) = ψ0(ξ1) ψ2(ξ2) = ξ22 − 1

The total number of terms Nt in an expansion of total order p involving n random variables is given by

Nt = 1 + P = 1 +
p∑
s=1

1
s!

s−1∏
r=0

(n+ r) =
(n+ p)!
n!p!

(2.10)
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This traditional approach will be referred to as a “total-order expansion.”

An important alternative approach is to employ a “tensor-product expansion,” in which polynomial order bounds
are applied on a per-dimension basis (no total-order bound is enforced) and all combinations of the one-dimensional
polynomials are included. That is, the multi-index defining the set of Ψj is constrained by

mj
i ≤ pi (2.11)

where pi is the polynomial order bound for the i-th dimension. In this case, the example basis for p = 2, n = 2 is

Ψ0(ξ) = ψ0(ξ1) ψ0(ξ2) = 1
Ψ1(ξ) = ψ1(ξ1) ψ0(ξ2) = ξ1

Ψ2(ξ) = ψ2(ξ1) ψ0(ξ2) = ξ21 − 1
Ψ3(ξ) = ψ0(ξ1) ψ1(ξ2) = ξ2

Ψ4(ξ) = ψ1(ξ1) ψ1(ξ2) = ξ1ξ2

Ψ5(ξ) = ψ2(ξ1) ψ1(ξ2) = (ξ21 − 1)ξ2
Ψ6(ξ) = ψ0(ξ1) ψ2(ξ2) = ξ22 − 1
Ψ7(ξ) = ψ1(ξ1) ψ2(ξ2) = ξ1(ξ22 − 1)
Ψ8(ξ) = ψ2(ξ1) ψ2(ξ2) = (ξ21 − 1)(ξ22 − 1)

and the total number of terms Nt is

Nt = 1 + P =
n∏
i=1

(pi + 1) (2.12)

It is apparent from Eq. 2.12 that the tensor-product expansion readily supports anisotropy in polynomial order
for each dimension, since the polynomial order bounds for each dimension can be specified independently. It
is also feasible to support anisotropy with total-order expansions, through pruning polynomials that satisfy the
total-order bound but violate individual per-dimension bounds (the number of these pruned polynomials would
then be subtracted from Eq. 2.10). Finally, custom tailoring of the expansion form can also be explored, e.g. to
closely synchronize with monomial coverage in sparse grids through use of a summation of tensor expansions
(see Section 2.7.3). In all cases, the specifics of the expansion are codified in the multi-index, and subsequent
machinery for estimating response values and statistics from the expansion can be performed in a manner that is
agnostic to the specific expansion form.

2.5 Stochastic Collocation

The SC expansion is formed as a sum of a set of multidimensional Lagrange interpolation polynomials, one
polynomial per unique collocation point. Since these polynomials have the feature of being equal to 1 at their
particular collocation point and 0 at all other points1, the coefficients of the expansion are just the response values
at each of the collocation points. This can be written as:

R ∼=
Np∑
j=1

rjLj(ξ) (2.13)

where the set of Np collocation points involves a structured multidimensional grid (a tensor-product grid as in
Eq. 2.3 or a Smolyak sparse grid). There is no need for tailoring of the expansion form as there is for PCE (i.e., to

1for tensor interpolants and sparse interpolants based on fully nested rules (e.g., Clenshaw-Curtis, Gauss-Patterson, Genz-Keister); sparse
interpolants based on non-nested rules will exhibit some interpolation error at the collocation points
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synchronize the expansion polynomials with the set of integrable monomials) since the polynomials that appear
in the expansion are determined by the Lagrange construction (Eq. 2.1). That is, any tailoring or refinement of the
expansion occurs through the selection of points in the interpolation grid and the polynomial orders of the basis
are adapted implicitly.

2.6 Transformations to uncorrelated standard variables

Polynomial chaos and stochastic collocation are expanded using polynomials that are functions of independent
standard random variables ξ. Thus, a key component of either approach is performing a transformation of vari-
ables from the original random variables x to independent standard random variables ξ and then applying the
stochastic expansion in the transformed space. This notion of independent standard space is extended over the
notion of “u-space” used in reliability methods (see Section 1.1.2) in that it extends the standardized set beyond
standard normals. For distributions that are already independent, three different approaches are of interest:

1. Extended basis: For each Askey distribution type, employ the corresponding Askey basis (Table 2.1). For
non-Askey types, numerically generate an optimal polynomial basis for each independent distribution as de-
scribed in Section 2.2. With usage of the optimal basis corresponding to each of the random variable types,
we can exploit basis orthogonality under expectation (e.g., Eq. 2.16) without requiring a transformation of
variables, thereby avoiding inducing additional nonlinearity that could slow convergence.

2. Askey basis: For non-Askey types, perform a nonlinear variable transformation from a given input dis-
tribution to the most similar Askey basis. For example, lognormal distributions might employ a Hermite
basis in a transformed standard normal space and loguniform, triangular, and histogram distributions might
employ a Legendre basis in a transformed standard uniform space. All distributions then employ the Askey
orthogonal polynomials and their associated Gauss points/weights.

3. Wiener basis: For non-normal distributions, employ a nonlinear variable transformation to standard normal
distributions. All distributions then employ the Hermite orthogonal polynomials and their associated Gauss
points/weights.

For dependent distributions, we must first perform a nonlinear variable transformation to uncorrelated standard
normal distributions, due to the independence of decorrelated standard normals. This involves the Nataf transfor-
mation, described in the following paragraph. We then have the following choices:

1. Single transformation: Following the Nataf transformation to independent standard normal distributions,
employ the Wiener basis in the transformed space.

2. Double transformation: From independent standard normal space, transform back to either the original
marginal distributions or the desired Askey marginal distributions and employ an extended or Askey ba-
sis, respectively, in the transformed space. Independence is maintained, but the nonlinearity of the Nataf
transformation is at least partially mitigated.

DAKOTA currently supports single transformations for dependent variables in combination with an Askey basis
for independent variables.

The transformation from correlated non-normal distributions to uncorrelated standard normal distributions is de-
noted as ξ = T (x) with the reverse transformation denoted as x = T−1(ξ). These transformations are nonlinear
in general, and possible approaches include the Rosenblatt [59], Nataf [17], and Box-Cox [8] transformations. The
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results in this paper employ the Nataf transformation, which is suitable for the common case when marginal distri-
butions and a correlation matrix are provided, but full joint distributions are not known2. The Nataf transformation
occurs in the following two steps. To transform between the original correlated x-space variables and correlated
standard normals (“z-space”), a CDF matching condition is applied for each of the marginal distributions:

Φ(zi) = F (xi) (2.14)

where Φ() is the standard normal cumulative distribution function and F () is the cumulative distribution function
of the original probability distribution. Then, to transform between correlated z-space variables and uncorrelated
ξ-space variables, the Cholesky factor L of a modified correlation matrix is used:

z = Lξ (2.15)

where the original correlation matrix for non-normals in x-space has been modified to represent the corresponding
“warped” correlation in z-space [17].

2.7 Spectral projection

The major practical difference between PCE and SC is that, in PCE, one must estimate the coefficients for known
basis functions, whereas in SC, one must form the interpolants for known coefficients. PCE estimates its co-
efficients using either spectral projection or linear regression, where the former approach involves numerical
integration based on random sampling, tensor-product quadrature, Smolyak sparse grids, or cubature methods.
In SC, the multidimensional interpolants need to be formed over structured data sets, such as point sets from
quadrature or sparse grids; approaches based on random sampling may not be used.

The spectral projection approach projects the response against each basis function using inner products and em-
ploys the polynomial orthogonality properties to extract each coefficient. Similar to a Galerkin projection, the
residual error from the approximation is rendered orthogonal to the selected basis. From Eq. 2.8, taking the inner
product of both sides with respect to Ψj and enforcing orthogonality yields:

αj =
〈R,Ψj〉
〈Ψ2

j 〉
=

1
〈Ψ2

j 〉

∫
Ω

RΨj %(ξ) dξ, (2.16)

where each inner product involves a multidimensional integral over the support range of the weighting function.
In particular, Ω = Ω1 ⊗ · · · ⊗ Ωn, with possibly unbounded intervals Ωj ⊂ R and the tensor product form
%(ξ) =

∏n
i=1 %i(ξi) of the joint probability density (weight) function. The denominator in Eq. 2.16 is the norm

squared of the multivariate orthogonal polynomial, which can be computed analytically using the product of
univariate norms squared

〈Ψ2
j 〉 =

n∏
i=1

〈ψ2
mj

i

〉 (2.17)

where the univariate inner products have simple closed form expressions for each polynomial in the Askey
scheme [1] and are readily computed as part of the numerically-generated solution procedures described in Sec-
tion 2.2. Thus, the primary computational effort resides in evaluating the numerator, which is evaluated numeri-
cally using sampling, quadrature, cubature, or sparse grid approaches (and this numerical approximation leads to
use of the term “pseudo-spectral” by some investigators).

2If joint distributions are known, then the Rosenblatt transformation is preferred.
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2.7.1 Sampling

In the sampling approach, the integral evaluation is equivalent to computing the expectation (mean) of the
response-basis function product (the numerator in Eq. 2.16) for each term in the expansion when sampling within
the density of the weighting function. This approach is only valid for PCE and since sampling does not provide
any particular monomial coverage guarantee, it is common to combine this coefficient estimation approach with
a total-order chaos expansion.

In computational practice, coefficient estimations based on sampling benefit from first estimating the response
mean (the first PCE coefficient) and then removing the mean from the expectation evaluations for all subsequent
coefficients. While this has no effect for quadrature/sparse grid methods (see following two sections) and little ef-
fect for fully-resolved sampling, it does have a small but noticeable beneficial effect for under-resolved sampling.

2.7.2 Tensor product quadrature

In quadrature-based approaches, the simplest general technique for approximating multidimensional integrals,
as in Eq. 2.16, is to employ a tensor product of one-dimensional quadrature rules. Since there is little benefit
to the use of nested quadrature rules in the tensor-product case3, we choose Gaussian abscissas, i.e. the zeros
of polynomials that are orthogonal with respect to a density function weighting, e.g. Gauss-Hermite, Gauss-
Legendre, Gauss-Laguerre, generalized Gauss-Laguerre, Gauss-Jacobi, or numerically-generated Gauss rules.

We first introduce an index i ∈ N+, i ≥ 1. Then, for each value of i, let {ξi1, . . . , ξimi
} ⊂ Ωi be a sequence

of abscissas for quadrature on Ωi. For f ∈ C0(Ωi) and n = 1 we introduce a sequence of one-dimensional
quadrature operators

U i(f)(ξ) =
mi∑
j=1

f(ξij)w
i
j , (2.18)

with mi ∈ N given. When utilizing Gaussian quadrature, Eq. 2.18 integrates exactly all polynomials of degree
less than 2mi − 1, for each i = 1, . . . , n. Given an expansion order p, the highest order coefficient evaluations
(Eq. 2.16) can be assumed to involve integrands of at least polynomial order 2p (Ψ of order p and R modeled to
order p) in each dimension such that a minimal Gaussian quadrature order of p+1 will be required to obtain good
accuracy in these coefficients.

Now, in the multivariate case n > 1, for each f ∈ C0(Ω) and the multi-index i = (i1, . . . , in) ∈ Nn+ we define
the full tensor product quadrature formulas

Qni f(ξ) =
(
U i1 ⊗ · · · ⊗U in

)
(f)(ξ) =

mi1∑
j1=1

· · ·
min∑
jn=1

f
(
ξi1j1 , . . . , ξ

in
jn

) (
wi1j1 ⊗ · · · ⊗ winjn

)
. (2.19)

Clearly, the above product needs
∏n
j=1mij function evaluations. Therefore, when the number of input random

variables is small, full tensor product quadrature is a very effective numerical tool. On the other hand, approx-
imations based on tensor product grids suffer from the curse of dimensionality since the number of collocation
points in a tensor grid grows exponentially fast in the number of input random variables. For example, if Eq. 2.19
employs the same order for all random dimensions, mij = m, then Eq. 2.19 requires mn function evaluations.

In [22], it is demonstrated that close synchronization of expansion form with the monomial resolution of a par-
ticular numerical integration technique can result in significant performance improvements. In particular, the
traditional approach of exploying a total-order PCE (Eqs. 2.9–2.10) neglects a significant portion of the mono-
mial coverage for a tensor-product quadrature approach, and one should rather employ a tensor-product PCE

3Unless a refinement procedure is in use.
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(Eqs. 2.11–2.12) to provide improved synchronization and more effective usage of the Gauss point evaluations.
When the quadrature points are standard Gauss rules (i.e., no Clenshaw-Curtis, Gauss-Patterson, or Genz-Keister
nested rules), it has been shown that tensor-product PCE and SC result in identical polynomial forms [15], com-
pletely eliminating a performance gap that exists between total-order PCE and SC [22].

2.7.3 Smolyak sparse grids

If the number of random variables is moderately large, one should rather consider sparse tensor product spaces as
first proposed by Smolyak [62] and further investigated by Refs. [32, 6, 29, 77, 48, 49] that reduce dramatically
the number of collocation points, while preserving a high level of accuracy.

Here we follow the notation and extend the description in Ref. [48] to describe the Smolyak isotropic formulas
A (w, n), where w is a level that is independent of dimension4. The Smolyak formulas are just linear combinations
of the product formulas in Eq. 2.19 with the following key property: only products with a relatively small number
of points are used. With U 0 = 0 and for i ≥ 1 define

∆i = U i −U i−1. (2.20)

and we set |i| = i1 + · · ·+ in. Then the isotropic Smolyak quadrature formula is given by

A (w, n) =
∑

|i|≤w+n

(
∆i1 ⊗ · · · ⊗∆in

)
. (2.21)

Equivalently, formula Eq. 2.21 can be written as [69]

A (w, n) =
∑

w+1≤|i|≤w+n

(−1)w+n−|i|
(

n− 1
w + n− |i|

)
·
(
U i1 ⊗ · · · ⊗U in

)
. (2.22)

For each index set i of levels, linear or nonlinear growth rules are used to define the corresponding one-dimensional
quadrature orders. The following growth rules are employed for indices i ≥ 1, where closed and open refer to the
inclusion and exclusion of the bounds within an interval, respectively:

closed nonlinear : m =
{

1 i = 1
2i−1 + 1 i > 1 (2.23)

open nonlinear : m = 2i − 1 (2.24)
open linear : m = 2i− 1 (2.25)

Nonlinear growth rules are used for fully nested rules (e.g., Clenshaw-Curtis is closed fully nested and Gauss-
Patterson is open fully nested), and linear growth rules are best for standard Gauss rules that take advantage of, at
most, “weak” nesting (e.g., reuse of the center point).

Examples of isotropic sparse grids, constructed from the fully nested Clenshaw-Curtis abscissas and the weakly-
nested Gaussian abscissas are shown in Figure 2.1, where Ω = [−1, 1]2 and both Clenshaw-Curtis and Gauss-
Legendre employ nonlinear growth5 from Eqs. 2.23 and 2.24, respectively. There, we consider a two-dimensional
parameter space and a maximum level w = 5 (sparse grid A (5, 2)). To see the reduction in function evaluations
with respect to full tensor product grids, we also include a plot of the corresponding Clenshaw-Curtis isotropic
full tensor grid having the same maximum number of points in each direction, namely 2w + 1 = 33.

4Other common formulations use a dimension-dependent level q where q ≥ n. We use w = q − n, where w ≥ 0 for all n.
5We prefer linear growth for Gauss-Legendre, but employ nonlinear growth here for purposes of comparison.

DAKOTA Version 5.1+ Theory Manual generated on September 13, 2011



2.7. SPECTRAL PROJECTION 27

Figure 2.1: Two-dimensional grid comparison with a tensor product grid using Clenshaw-Curtis points (left)
and sparse grids A (5, 2) utilizing Clenshaw-Curtis (middle) and Gauss-Legendre (right) points with nonlinear
growth.

In [22], it is demonstrated that the synchronization of total-order PCE with the monomial resolution of a sparse
grid is imperfect, and that sparse grid SC consistently outperforms sparse grid PCE when employing the sparse
grid to directly evaluate the integrals in Eq. 2.16. In our DAKOTA implementation, we depart from the use of
sparse integration of total-order expansions, and instead employ a linear combination of tensor expansions [14].
That is, we compute separate tensor polynomial chaos expansions for each of the underlying tensor quadrature
grids (for which there is no synchronization issue) and then sum them using the Smolyak combinatorial coeffi-
cient (from Eq. 2.22 in the isotropic case). This improves accuracy, preserves the PCE/SC consistency property
described in Section 2.7.2, and also simplifies PCE for the case of anisotropic sparse grids described next.

For anisotropic Smolyak sparse grids, a dimension preference vector is used to emphasize important stochastic
dimensions. Given a mechanism for defining anisotropy, we can extend the definition of the sparse grid from that
of Eq. 2.22 to weight the contributions of different index set components. First, the sparse grid index set constraint
becomes

wγ < i · γ ≤ wγ + |γ| (2.26)

where γ is the minimum of the dimension weights γk, k = 1 to n. The dimension weighting vector γ amplifies
the contribution of a particular dimension index within the constraint, and is therefore inversely related to the
dimension preference (higher weighting produces lower index set levels). For the isotropic case of all γk = 1,
it is evident that you reproduce the isotropic index constraint w + 1 ≤ |i| ≤ w + n (note the change from < to
≤). Second, the combinatorial coefficient for adding the contribution from each of these index sets is modified as
described in [10].

2.7.4 Cubature

Cubature rules [63, 76] are specifically optimized for multidimensional integration and are distinct from tensor-
products and sparse grids in that they are not based on combinations of one-dimensional Gauss quadrature rules.
They have the advantage of improved scalability to large numbers of random variables, but are restricted in inte-
grand order and require homogeneous random variable sets (achieved via transformation). For example, optimal
rules for integrands of 2, 3, and 5 and either Gaussian or uniform densities allow low-order polynomial chaos
expansions (p = 1 or 2) that are useful for global sensitivity analysis including main effects and, for p = 2, all
two-way interactions.
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2.8 Linear regression

The linear regression approach uses a single linear least squares solution of the form:

Ψα = R (2.27)

to solve for the complete set of PCE coefficientsα that best match a set of response valuesR. The set of response
values is obtained either by performing a design of computer experiments within the density function of ξ (point
collocation [68, 42]) or from a subset of tensor quadrature points with highest product weight (probabilistic collo-
cation [65]). In either case, each row of the matrix Ψ contains the Nt multivariate polynomial terms Ψj evaluated
at a particular ξ sample. An over-sampling is recommended in the case of random samples ([42] recommends 2Nt
samples), resulting in a least squares solution for the over-determined system. As for sampling-based coefficient
estimation, this approach is only valid for PCE and does not require synchronization with monomial coverage;
thus it is common to combine this coefficient estimation approach with a traditional total-order chaos expansion in
order to keep sampling requirements low. In this case, simulation requirements for this approach scale as r(n+p)!

n!p!
(r is an over-sampling factor with typical values 1 ≤ r ≤ 2), which can be significantly more affordable than
isotropic tensor-product quadrature (scales as (p+ 1)n for standard Gauss rules) for larger problems. Finally, ad-
ditional regression equations can be obtained through the use of derivative information (gradients and Hessians)
from each collocation point, which can aid in scaling with respect to the number of random variables, particularly
for adjoint-based derivative approaches.

2.9 Analytic moments

Mean and covariance of polynomial chaos expansions are available in simple closed form:

µi = 〈Ri〉 ∼=
P∑
k=0

αik〈Ψk(ξ)〉 = αi0 (2.28)

Σij = 〈(Ri − µi)(Rj − µj)〉 ∼=
P∑
k=1

P∑
l=1

αikαjl〈Ψk(ξ)Ψl(ξ)〉 =
P∑
k=1

αikαjk〈Ψ2
k〉 (2.29)

where the norm squared of each multivariate polynomial is computed from Eq. 2.17. These expressions provide
exact moments of the expansions, which converge under refinement to moments of the true response functions.

Similar expressions can be derived for stochastic collocation:

µi = 〈Ri〉 ∼=
Np∑
k=1

rik〈Lk(ξ)〉 =
Np∑
k=1

rikwk (2.30)

Σij = 〈RiRj〉 − µiµj ∼=
Np∑
k=1

Np∑
l=1

rikrjl〈Lk(ξ)Ll(ξ)〉 − µiµj =
Np∑
k=1

rikrjkwk − µiµj (2.31)

where we have simplified the expectation of Lagrange polynomials constructed at Gauss points and then integrated
at these same Gauss points. For tensor grids and sparse grids with fully nested rules, these expectations leave only
the weight corresponding to the point for which the interpolation value is one, such that the final equalities in
Eqs. 2.30–2.31 hold precisely. For sparse grids with non-nested rules, however, interpolation error exists at the
collocation points, such that these final equalities hold only approximately. In this case, we have the choice
of computing the moments based on sparse numerical integration or based on the moments of the (imperfect)
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sparse interpolant, where small differences may exist prior to numerical convergence. In DAKOTA, we employ
the former approach; i.e., the right-most expressions in Eqs. 2.30–2.31 are employed for all tensor and sparse
cases irregardless of nesting. Skewness and kurtosis calculations as well as sensitivity derivations in the following
sections are also based on this choice. The expressions for skewness and (excess) kurtosis from direct numerical
integration of the response function are as follows:

γ1i =

〈(
Ri − µi
σi

)3
〉

∼=
1
σ3
i

 Np∑
k=1

(rik − µi)3wk

 (2.32)

γ2i =

〈(
Ri − µi
σi

)4
〉
− 3 ∼=

1
σ4
i

 Np∑
k=1

(rik − µi)4wk

− 3 (2.33)

2.10 Local sensitivity analysis: derivatives with respect to expansion vari-
ables

Polynomial chaos expansions are easily differentiated with respect to the random variables [57]. First, using
Eq. 2.8,

dR

dξi
=

P∑
j=0

αj
dΨj(ξ)
dξi

(2.34)

and then using Eq. 2.7,
dΨj(ξ)
dξi

=
dψi
dξi

n∏
k=1
k 6=i

ψmj
k
(ξk) (2.35)

where the univariate polynomial derivatives dψi

dξi
have simple closed form expressions for each polynomial in the

Askey scheme [1]. Finally, using the Jacobian of the (extended) Nataf variable transformation,

dR

dxi
=
dR

dξ

dξ

dxi
(2.36)

which simplifies to dR
dξi

dξi

dxi
in the case of uncorrelated xi.

Similar expressions may be derived for stochastic collocation, starting from Eq. 2.13:

dR

dξi
=

Np∑
j=1

rj
dLj(ξ)
dξi

(2.37)

where the multidimensional interpolant Lj is formed over either tensor-product quadrature points or a Smolyak
sparse grid. For the former case, the derivative of the multidimensional interpolant Lj involves a product rule of
the one-dimensional interpolants Lk:

dLj(ξ)
dξi

=
dLi
dξi

n∏
k=1
k 6=i

Lk(ξk) (2.38)

and for the latter case, the derivative involves a linear combination of these product rules, as dictated by the
Smolyak recursion shown in Eq. 2.22. Finally, calculation of dR

dxi
involves the same Jacobian application shown

in Eq. 2.36.
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2.11 Global sensitivity analysis: variance-based decomposition

In addition to obtaining derivatives of stochastic expansions with respect to the random variables, it is possible
to obtain variance-based sensitivity indices from the stochastic expansions. Variance-based sensitivity indices are
explained in the Design of Experiments Chapter of the Users Manual. The concepts are summarized here as well.
Variance-based decomposition is a global sensitivity method that summarizes how the uncertainty in model output
can be apportioned to uncertainty in individual input variables. VBD uses two primary measures, the main effect
sensitivity index Si and the total effect index Ti. These indices are also called the Sobol’ indices. The main effect
sensitivity index corresponds to the fraction of the uncertainty in the output, Y , that can be attributed to input xi
alone. The total effects index corresponds to the fraction of the uncertainty in the output, Y , that can be attributed
to input xi and its interactions with other variables. The main effect sensitivity index compares the variance of
the conditional expectation V arxi [E(Y |xi)] against the total variance V ar(Y ). Formulas for the indices are:

Si =
V arxi [E(Y |xi)]

V ar(Y )
(2.39)

and

Ti =
E(V ar(Y |x−i))

V ar(Y )
=
V ar(Y )− V ar(E[Y |x−i])

V ar(Y )
(2.40)

where Y = f(x) and x−i = (x1, ..., xi−1, xi+1, ..., xm).

The calculation of Si and Ti requires the evaluation of m-dimensional integrals which are typically approximated
by Monte-Carlo sampling. However, in stochastic expansion methods, it is possible to obtain the sensitivity
indices as analytic functions of the coefficients in the stochastic expansion. The derivation of these results is
presented in [64]. The sensitivity indices are printed as a default when running either polynomial chaos or
stochastic collocation in DAKOTA. Note that in addition to the first-order main effects, Si, we are able to calculate
the sensitivity indices for higher order interactions such as the two-way interaction Si,j .

2.12 Automated Refinement

Several approaches for refinement of stochastic expansions are presented here: uniform p-refinement with isotropic
sparse and tensor grids, adaptive p-refinement using anisotropic sparse and tensor grids, and goal-oriented adap-
tive p-refinement using generalized sparse grids. Each involves incrementing the grid upon which the stochastic
expansions are based, using differing refinement criteria and convergence controls.

2.12.1 Uniform p-refinement with isotropic grids

Uniform p-refinement involves ramping the order of a tensor-product quadrature grid or the level of a Smolyak
sparse grid isotropically. In this case, dimension preferences are not computed, and the only algorithmic require-
ments are:

• With the usage of nested integration rules with restricted exponential growth, DAKOTA must ensure that
a change in level results in a sufficient change in the grid; otherwise premature convergence could occur
within the refinement process. If no change is initially detected, DAKOTA continues incrementing the
order/level (without grid evaluation) until the number of grid points increases.
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• A convergence criterion is required. For uniform refinement, DAKOTA employs the L2 norm of the change
in the response covariance matrix as a general-purpose convergence metric.

2.12.2 Adaptive p-refinement with anisotropic grids

Adaptive p-refinement involves ramping the order of a tensor-product quadrature grid or the level of a Smolyak
sparse grid anisotropically, that is, using a defined dimension preference. This dimension preference may be
computed from local sensitivity analysis, global sensitivity analysis, a posteriori error estimation, or decay rate
estimation. In the current release, we focus on global sensitivity analysis from low order isotropic expansions
where dimension preference is defined from total Sobol’ indices (Eq. 2.40) and is updated on every iteration. This
dimension preference vector supports anisotropic sparse grids based on a linear index-set constraint (Eq. 2.26)
or anisotropic tensor grids (Eq. 2.19) with dimension order scaled proportionately to preference; in both cases,
dimension refinement lower bound constraints are enforced to ensure that all previously evaluated points remain
in new refined grids.

2.12.3 Goal-oriented p-refinement with generalized sparse grids

The uniform and adaptive refinement capabilities described above define anisotropy and control convergence in a
highly structured manner based on variance-related measures. The generalized sparse grid algorithm [33], on the
other hand, supports greater flexibility in the definition of sparse grid index sets and supports refinement controls
based on general statistical quantities of interest (QOI). This algorithm was originally intended for adaptive nu-
merical integration on a hypercube, but can be readily extended to the adaptive refinement of stochastic expansions
using the following customizations:

• In addition to hierarchical interpolants in SC, we employ independent polynomial chaos expansions for
each active and accepted index set. Pushing and popping index sets then involves increments of tensor
chaos expansions (as described in Section 2.7.3) along with corresponding increments to the Smolyak
combinatorial coefficients.

• Since we support bases for more than uniform distributions on a hypercube, we exploit rule nesting when
possible (i.e., Gauss-Patterson for uniform or transformed uniform variables, and Genz-Keister for nor-
mal or transformed normal variables), but we do not require it. This implies a loss of some algorithmic
simplifications in [33] that occur when grids are strictly hierarchical.

• In the evaluation of the effect of a trial index set, the goal in [33] is numerical integration and the metric is
the size of the increment induced by the trial set on the expectation of the function of interest. It is straight-
forward to instead measure the effect of a trial index set on response covariance, numerical probability, or
other statistical QOI computed by post-processing the resulting PCE or SC expansion. By tying the re-
finement process more closely to the statistical QOI, the refinement process can become more efficient in
achieving the desired analysis objectives.

Given these customizations, the algorithmic steps can be summarized as:

1. Initialization: Starting from an initial isotropic or anisotropic reference grid (often the w = 0 grid corre-
sponding to a single collocation point), accept the reference index sets as the old set and define active index
sets using the admissible forward neighbors of all old index sets.

2. Trial set evaluation: Evaluate the tensor grid corresponding to each trial active index set, form the tensor
polynomial chaos expansion or tensor interpolant corresponding to it, update the Smolyak combinatorial
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coefficients, and combine the trial expansion with the reference expansion. Perform necessary bookkeeping
to allow efficient restoration of previously evaluated tensor expansions.

3. Trial set selection: Select the trial index set that induces the largest change in the statistical quantity of inter-
est. In our implementation, we employ anL2 norm of change in CDF/CCDF probability/reliability/response
level mappings, when level mappings are present, or L2 norm of change in response covariance, when level
mappings are not present.

4. Update sets: If the largest change induced by the trial sets exceeds a specified convergence tolerance, then
promote the selected trial set from the active set to the old set and update the active sets with new admissible
forward neighbors; return to step 2 and evaluate all trial sets with respect to the new reference point. If the
convergence tolerance is satisfied, advance to step 5.

5. Finalization: Promote all remaining active sets to the old set, update the Smolyak combinatorial coeffi-
cients, and perform a final combination of tensor expansions to arrive at the final result for the statistical
quantity of interest.
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Chapter 3

Epistemic Methods

This chapter covers theoretical aspects of methods for propagating epistemic uncertainty.

3.1 Dempster-Shafer theory of evidence (DSTE)

In Dempster-Shafer theory, the event space is defined by a triple (S,S,m) which defines S the universal set, S a
countable collection of subsets of S, and a notional measurem. S and S have a similar meaning to that in classical
probability theory; the main difference is that S, also known as the focal elements, does not have to be a σ-algebra
over S. The operator m is defined to be

m(U) =
{
> 0 if U ∈ S

0 if U ⊂ S and U /∈ S (3.1)

∑
U∈S

m(U) = 1 (3.2)

where m(U) is known as the basic probability assignment (BPA) of the set U . In the DSTE framework, belief and
plausibility are defined as:

Bel(E) =
∑

{U | U⊂E, U∈S}

m(U) (3.3)

Pl(E) =
∑

{U | U∩E6=∅, U∈S}

m(U) (3.4)

The belief Bel(E) is interpreted to be the minimum likelihood that is associated with the event E . Similarly, the
plausibility Pl(E) is the maximum amount of likelihood that could be associated with E . This particular structure
allows us to handle unconventional inputs, such as conflicting pieces of evidence (e.g. dissenting expert opinions),
that would be otherwise discarded in an interval analysis or probabilistic framework. The ability to make use of
this information results in a commensurately more informed output.

The procedure to compute belief structures involves four major steps:
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1. Determine the set of d-dimensional hypercubes that have a nonzero evidential measure
2. Compute the composite evidential measure (BPA) of each hypercube
3. Propagate each hypercube through the model and obtain the response bounds within each hypercube
4. Aggregate the minimum and maximum values of the response per hypercube with the BPAs to obtain cu-

mulative belief and plausibility functions on the response (e.g. calculate a belief structure on the response).

The first step involves identifying combinations of focal elements defined on the inputs that define a hypercube.
The second step involves defining an aggregate BPA for that hypercube, which is the product of the BPAs of the
individual focal elements defining the hypercube. The third step involves finding the maximum and minimum
values of the response value in each hypercube, and this part can be very computationally expensive. Finally, the
results over all hypercubes are aggregated to form belief structures on the response.
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Chapter 4

Surrogate-Based Local Minimization

A generally-constrained nonlinear programming problem takes the form

minimize f(x)
subject to gl ≤ g(x) ≤ gu

h(x) = ht
xl ≤ x ≤ xu (4.1)

where x ∈ <n is the vector of design variables, and f , g, and h are the objective function, nonlinear inequal-
ity constraints, and nonlinear equality constraints, respectively1. Individual nonlinear inequality and equality
constraints are enumerated using i and j, respectively (e.g., gi and hj). The corresponding surrogate-based opti-
mization (SBO) algorithm may be formulated in several ways and applied to either optimization or least-squares
calibration problems. In all cases, SBO solves a sequence of k approximate optimization subproblems subject
to a trust region constraint ∆k; however, many different forms of the surrogate objectives and constraints in the
approximate subproblem can be explored. In particular, the subproblem objective may be a surrogate of the orig-
inal objective or a surrogate of a merit function (most commonly, the Lagrangian or augmented Lagrangian),
and the subproblem constraints may be surrogates of the original constraints, linearized approximations of the
surrogate constraints, or may be omitted entirely. Each of these combinations is shown in Table 4.1, where black
indicates an inappropriate combination, gray indicates an acceptable combination, and blue indicates a common
combination.

Initial approaches to nonlinearly-constrained SBO optimized an approximate merit function which incorporated
the nonlinear constraints [58, 3]:

minimize Φ̂k(x)
subject to ‖ x− xkc ‖∞ ≤ ∆k (4.2)

1Any linear constraints are not approximated and may be added without modification to all formulations

Table 4.1: SBO approximate subproblem formulations.
Original Objective Lagrangian Augmented Lagrangian

No constraints TRAL
Linearized constraints SQP-like
Original constraints Direct surrogate IPTRSAO
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where the surrogate merit function is denoted as Φ̂(x), xc is the center point of the trust region, and the trust region
is truncated at the global variable bounds as needed. The merit function to approximate was typically chosen to
be a standard implementation [67, 50, 35] of the augmented Lagrangian merit function (see Eqs. 4.11–4.12),
where the surrogate augmented Lagrangian is constructed from individual surrogate models of the objective and
constraints (approximate and assemble, rather than assemble and approximate). In Table 4.1, this corresponds
to row 1, column 3, and is known as the trust-region augmented Lagrangian (TRAL) approach. While this
approach was provably convergent, convergence rates to constrained minima have been observed to be slowed by
the required updating of Lagrange multipliers and penalty parameters [53]. Prior to converging these parameters,
SBO iterates did not strictly respect constraint boundaries and were often infeasible. A subsequent approach
(IPTRSAO [53]) that sought to directly address this shortcoming added explicit surrogate constraints (row 3,
column 3 in Table 4.1):

minimize Φ̂k(x)
subject to gl ≤ ĝk(x) ≤ gu

ĥk(x) = ht
‖ x− xkc ‖∞ ≤ ∆k . (4.3)

While this approach does address infeasible iterates, it still shares the feature that the surrogate merit function
may reflect inaccurate relative weightings of the objective and constraints prior to convergence of the Lagrange
multipliers and penalty parameters. That is, one may benefit from more feasible intermediate iterates, but the
process may still be slow to converge to optimality. The concept of this approach is similar to that of SQP-like
SBO approaches [3] which use linearized constraints:

minimize Φ̂k(x)
subject to gl ≤ ĝk(xkc ) +∇ĝk(xkc )

T (x− xkc ) ≤ gu
ĥk(xkc ) +∇ĥk(xkc )

T (x− xkc ) = ht
‖ x− xkc ‖∞ ≤ ∆k . (4.4)

in that the primary concern is minimizing a composite merit function of the objective and constraints, but under
the restriction that the original problem constraints may not be wildly violated prior to convergence of Lagrange
multiplier estimates. Here, the merit function selection of the Lagrangian function (row 2, column 2 in Table 4.1;
see also Eq. 4.10) is most closely related to SQP, which includes the use of first-order Lagrange multiplier up-
dates (Eq. 4.16) that should converge more rapidly near a constrained minimizer than the zeroth-order updates
(Eqs. 4.13-4.14) used for the augmented Lagrangian.

All of these previous constrained SBO approaches involve a recasting of the approximate subproblem objective
and constraints as a function of the original objective and constraint surrogates. A more direct approach is to use
a formulation of:

minimize f̂k(x)
subject to gl ≤ ĝk(x) ≤ gu

ĥk(x) = ht
‖ x− xkc ‖∞ ≤ ∆k (4.5)

This approach has been termed the direct surrogate approach since it optimizes surrogates of the original objective
and constraints (row 3, column 1 in Table 4.1) without any recasting. It is attractive both from its simplicity and
potential for improved performance, and is the default approach taken in DAKOTA. Other DAKOTA defaults
include the use of a filter method for iterate acceptance (see Section 4.1), an augmented Lagrangian merit function
(see Section 4.2), Lagrangian hard convergence assessment (see Section 4.3), and no constraint relaxation (see
Section 4.4).
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Table 4.2: Sample trust region ratio logic.
Ratio Value Surrogate Accuracy Iterate Acceptance Trust Region Sizing
ρk ≤ 0 poor reject step shrink

0 < ρk ≤ 0.25 marginal accept step shrink
0.25 < ρk < 0.75 or ρk > 1.25 moderate accept step retain

0.75 ≤ ρk ≤ 1.25 good accept step expand2

While the formulation of Eq. 4.2 (and others from row 1 in Table 4.1) can suffer from infeasible intermediate
iterates and slow convergence to constrained minima, each of the approximate subproblem formulations with
explicit constraints (Eqs. 4.3-4.5, and others from rows 2-3 in Table 4.1) can suffer from the lack of a feasible
solution within the current trust region. Techniques for dealing with this latter challenge involve some form of
constraint relaxation. Homotopy approaches [53, 52] or composite step approaches such as Byrd-Omojokun [51],
Celis-Dennis-Tapia [11], or MAESTRO [3] may be used for this purpose (see Section 4.4).

After each of the k iterations in the SBO method, the predicted step is validated by computing f(xk∗), g(xk∗),
and h(xk∗). One approach forms the trust region ratio ρk which measures the ratio of the actual improvement to
the improvement predicted by optimization on the surrogate model. When optimizing on an approximate merit
function (Eqs. 4.2–4.4), the following ratio is natural to compute

ρk =
Φ(xkc )− Φ(xk∗)
Φ̂(xkc )− Φ̂(xk∗)

. (4.6)

The formulation in Eq. 4.5 may also form a merit function for computing the trust region ratio; however, the omis-
sion of this merit function from explicit use in the approximate optimization cycles can lead to synchronization
problems with the optimizer.

Once computed, the value for ρk can be used to define the step acceptance and the next trust region size ∆k+1

using logic similar to that shown in Table 4.2. Typical factors for shrinking and expanding are 0.5 and 2.0,
respectively, but these as well as the threshold ratio values are tunable parameters in the algorithm (see Surrogate-
Based Method controls in the DAKOTA Reference Manual [2]). In addition, the use of discrete thresholds is not
required, and continuous relationships using adaptive logic can also be explored [74, 75]. Iterate acceptance or
rejection completes an SBO cycle, and the cycles are continued until either soft or hard convergence criteria (see
Section 4.3) are satisfied.

4.1 Iterate acceptance logic

Figure 4.1: Depiction of filter
method.

When a surrogate optimization is completed and the approximate solution
has been validated, then the decision must be made to either accept or reject
the step. The traditional approach is to base this decision on the value of the
trust region ratio, as outlined previously in Table 4.2. An alternate approach
is to utilize a filter method [28], which does not require penalty parameters
or Lagrange multiplier estimates. The basic idea in a filter method is to ap-
ply the concept of Pareto optimality to the objective function and constraint
violations and only accept an iterate if it is not dominated by any previous
iterate. Mathematically, a new iterate is not dominated if at least one of the
following:

either f < f (i) or c < c(i) (4.7)
2Exception: retain if xk

∗ in trust region interior for design of experiments-based surrogates (global data fits, S-ROM, global E-ROM)
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is true for all i in the filter, where c is a selected norm of the constraint vi-
olation. This basic description can be augmented with mild requirements to
prevent point accumulation and assure convergence, known as a slanting fil-
ter [28]. Figure 4.1 illustrates the filter concept, where objective values are
plotted against constraint violation for accepted iterates (blue circles) to define the dominated region (denoted by
the gray lines). A filter method relaxes the common enforcement of monotonicity in constraint violation reduction
and, by allowing more flexibility in acceptable step generation, often allows the algorithm to be more efficient.

The use of a filter method is compatible with any of the SBO formulations in Eqs. 4.2–4.5.

4.2 Merit functions

The merit function Φ(x) used in Eqs. 4.2-4.4,4.6 may be selected to be a penalty function, an adaptive penalty
function, a Lagrangian function, or an augmented Lagrangian function. In each of these cases, the more flexible
inequality and equality constraint formulations with two-sided bounds and targets (Eqs. 4.1,4.3-4.5), have been
converted to a standard form of g(x) ≤ 0 and h(x) = 0 (in Eqs. 4.8,4.10-4.16). The active set of inequality
constraints is denoted as g+.

The penalty function employed in this paper uses a quadratic penalty with the penalty schedule linked to SBO
iteration number

Φ(x, rp) = f(x) + rpg+(x)Tg+(x) + rph(x)Th(x) (4.8)

rp = e(k+offset)/10 (4.9)

The adaptive penalty function is identical in form to Eq. 4.8, but adapts rp using monotonic increases in the
iteration offset value in order to accept any iterate that reduces the constraint violation.

The Lagrangian merit function is

Φ(x,λg,λh) = f(x) + λTg g+(x) + λThh(x) (4.10)

for which the Lagrange multiplier estimation is discussed in Section 4.3. Away from the optimum, it is possible
for the least squares estimates of the Lagrange multipliers for active constraints to be zero, which equates to
omitting the contribution of an active constraint from the merit function. This is undesirable for tracking SBO
progress, so usage of the Lagrangian merit function is normally restricted to approximate subproblems and hard
convergence assessments.

The augmented Lagrangian employed in this paper follows the sign conventions described in [67]

Φ(x,λψ,λh, rp) = f(x) + λTψψ(x) + rpψ(x)Tψ(x) + λThh(x) + rph(x)Th(x) (4.11)

ψi = max
{
gi,−

λψi

2rp

}
(4.12)

where ψ(x) is derived from the elimination of slack variables for the inequality constraints. In this case, simple
zeroth-order Lagrange multiplier updates may be used:

λk+1
ψ = λkψ + 2rpψ(x) (4.13)

λk+1
h = λkh + 2rph(x) (4.14)

The updating of multipliers and penalties is carefully orchestrated [13] to drive reduction in constraint violation of
the iterates. The penalty updates can be more conservative than in Eq. 4.9, often using an infrequent application
of a constant multiplier rather than a fixed exponential progression.
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4.3 Convergence assessment

To terminate the SBO process, hard and soft convergence metrics are monitored. It is preferable for SBO studies
to satisfy hard convergence metrics, but this is not always practical (e.g., when gradients are unavailable or un-
reliable). Therefore, simple soft convergence criteria are also employed which monitor for diminishing returns
(relative improvement in the merit function less than a tolerance for some number of consecutive iterations).

To assess hard convergence, one calculates the norm of the projected gradient of a merit function whenever the
feasibility tolerance is satisfied. The best merit function for this purpose is the Lagrangian merit function from
Eq. 4.10. This requires a least squares estimation for the Lagrange multipliers that best minimize the projected
gradient:

∇xΦ(x,λg,λh) = ∇xf(x) + λTg∇xg+(x) + λTh∇xh(x) (4.15)

where gradient portions directed into active global variable bounds have been removed. This can be posed as a
linear least squares problem for the multipliers:

Aλ = −∇xf (4.16)

where A is the matrix of active constraint gradients, λg is constrained to be non-negative, and λh is unrestricted
in sign. To estimate the multipliers using non-negative and bound-constrained linear least squares, the NNLS and
BVLS routines [46] from NETLIB are used, respectively.

4.4 Constraint relaxation

The goal of constraint relaxation is to achieve efficiency through the balance of feasibility and optimality when
the trust region restrictions prevent the location of feasible solutions to constrained approximate subproblems
(Eqs. 4.3-4.5, and other formulations from rows 2-3 in Table 4.1). The SBO algorithm starting from infeasible
points will commonly generate iterates which seek to satisfy feasibility conditions without regard to objective
reduction [52].

One approach for achieving this balance is to use relaxed constraints when iterates are infeasible with respect to
the surrogate constraints. We follow Perez, Renaud, and Watson [53], and use a global homotopy mapping the
relaxed constraints and the surrogate constraints. For formulations in Eqs. 4.3 and 4.5 (and others from row 3 in
Table 4.1), the relaxed constraints are defined from

g̃k(x, τ) = ĝk(x) + (1− τ)bg (4.17)

h̃k(x, τ) = ĥk(x) + (1− τ)bh (4.18)

For Eq. 4.4 (and others from row 2 in Table 4.1), the original surrogate constraints ĝk(x) and ĥk(x) in Eqs. 4.17-
4.18 are replaced with their linearized forms (ĝk(xkc ) +∇ĝk(xkc )

T (x− xkc ) and ĥk(xkc ) +∇ĥk(xkc )
T (x− xkc ),

respectively). The approximate subproblem is then reposed using the relaxed constraints as

minimize f̂k(x) or Φ̂k(x)
subject to gl ≤ g̃k(x, τk) ≤ gu

h̃k(x, τk) = ht
‖ x− xkc ‖∞ ≤ ∆k (4.19)

in place of the corresponding subproblems in Eqs. 4.3-4.5. Alternatively, since the relaxation terms are constants
for the kth iteration, it may be more convenient for the implementation to constrain ĝk(x) and ĥk(x) (or their

DAKOTA Version 5.1+ Theory Manual generated on September 13, 2011



40 CHAPTER 4. SURROGATE-BASED LOCAL MINIMIZATION

linearized forms) subject to relaxed bounds and targets (g̃kl , g̃ku, h̃kt ). The parameter τ is the homotopy parameter
controlling the extent of the relaxation: when τ = 0, the constraints are fully relaxed, and when τ = 1, the
surrogate constraints are recovered. The vectors bg,bh are chosen so that the starting point, x0, is feasible with
respect to the fully relaxed constraints:

gl ≤ g̃0(x0, 0) ≤ gu (4.20)
h̃0(x0, 0) = ht (4.21)

At the start of the SBO algorithm, τ0 = 0 if x0 is infeasible with respect to the unrelaxed surrogate constraints;
otherwise τ0 = 1 (i.e., no constraint relaxation is used). At the start of the kth SBO iteration where τk−1 < 1, τk

is determined by solving the subproblem

maximize τk

subject to gl ≤ g̃k(x, τk) ≤ gu
h̃k(x, τk) = ht

‖ x− xkc ‖∞ ≤ ∆k

τk ≥ 0 (4.22)

starting at (xk−1
∗ , τk−1), and then adjusted as follows:

τk = min
{
1, τk−1 + α

(
τkmax − τk−1

)}
(4.23)

The adjustment parameter 0 < α < 1 is chosen so that that the feasible region with respect to the relaxed
constraints has positive volume within the trust region. Determining the optimal value for α remains an open
question and will be explored in future work.

After τk is determined using this procedure, the problem in Eq. 4.19 is solved for xk∗ . If the step is accepted, then
the value of τk is updated using the current iterate xk∗ and the validated constraints g(xk∗) and h(xk∗):

τk = min {1,mini τi,minj τj} (4.24)

where τi = 1 +
min{gi(x

k
∗)−gli

,gui
−gi(x

k
∗)}

bgi
(4.25)

τj = 1− |hj(x
k
∗)−htj

|
bhj

(4.26)

Figure 4.2: Illustration of SBO iterates
using surrogate (red) and relaxed (blue)
constraints.

Figure 4.2 illustrates the SBO algorithm on a two-dimensional prob-
lem with one inequality constraint starting from an infeasible point, x0.
The minimizer of the problem is denoted as x∗. Iterates generated using
the surrogate constraints are shown in red, where feasibility is achieved
first, and then progress is made toward the optimal point. The iterates
generated using the relaxed constraints are shown in blue, where a bal-
ance of satisfying feasibility and optimality has been achieved, leading
to fewer overall SBO iterations.

The behavior illustrated in Fig. 4.2 is an example where using the re-
laxed constraints over the surrogate constraints may improve the overall
performance of the SBO algorithm by reducing the number of itera-
tions performed. This improvement comes at the cost of solving the
minimization subproblem in Eq. 4.22, which can be significant in some
cases (i.e., when the cost of evaluating ĝk(x) and ĥk(x) is not negligi-
ble, such as with multifidelity or ROM surrogates). As shown in the numerical experiments involving the Barnes
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problem presented in [53], the directions toward constraint violation reduction and objective function reduction
may be in opposing directions. In such cases, the use of the relaxed constraints may result in an increase in the
overall number of SBO iterations since feasibility must ultimately take precedence.
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Chapter 5

Optimization Under Uncertainty (OUU)

5.1 Reliability-Based Design Optimization (RBDO)

Reliability-based design optimization (RBDO) methods are used to perform design optimization accounting for
reliability metrics. The reliability analysis capabilities described in Section 1.1 provide a substantial foundation
for exploring a variety of gradient-based RBDO formulations. [20] investigated bi-level, fully-analytic bi-level,
and first-order sequential RBDO approaches employing underlying first-order reliability assessments. [21] inves-
tigated fully-analytic bi-level and second-order sequential RBDO approaches employing underlying second-order
reliability assessments. These methods are overviewed in the following sections.

5.1.1 Bi-level RBDO

The simplest and most direct RBDO approach is the bi-level approach in which a full reliability analysis is
performed for every optimization function evaluation. This involves a nesting of two distinct levels of optimization
within each other, one at the design level and one at the MPP search level.

Since an RBDO problem will typically specify both the z̄ level and the p̄/β̄ level, one can use either the RIA
or the PMA formulation for the UQ portion and then constrain the result in the design optimization portion. In
particular, RIA reliability analysis maps z̄ to p/β, so RIA RBDO constrains p/β:

minimize f

subject to β ≥ β̄

or p ≤ p̄ (5.1)

And PMA reliability analysis maps p̄/β̄ to z, so PMA RBDO constrains z:

minimize f

subject to z ≥ z̄ (5.2)

where z ≥ z̄ is used as the RBDO constraint for a cumulative failure probability (failure defined as z ≤ z̄)
but z ≤ z̄ would be used as the RBDO constraint for a complementary cumulative failure probability (failure
defined as z ≥ z̄). It is worth noting that DAKOTA is not limited to these types of inequality-constrained RBDO
formulations; rather, they are convenient examples. DAKOTA supports general optimization under uncertainty
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mappings [25] which allow flexible use of statistics within multiple objectives, inequality constraints, and equality
constraints.

An important performance enhancement for bi-level methods is the use of sensitivity analysis to analytically
compute the design gradients of probability, reliability, and response levels. When design variables are separate
from the uncertain variables (i.e., they are not distribution parameters), then the following first-order expressions
may be used [39, 45, 4]:

∇dz = ∇dg (5.3)

∇dβcdf =
1

‖ ∇uG ‖
∇dg (5.4)

∇dpcdf = −φ(−βcdf )∇dβcdf (5.5)

where it is evident from Eqs. 1.10-1.11 that ∇dβccdf = −∇dβcdf and ∇dpccdf = −∇dpcdf . In the case of
second-order integrations, Eq. 5.5 must be expanded to include the curvature correction. For Breitung’s correction
(Eq. 1.37),

∇dpcdf =

Φ(−βp)
n−1∑
i=1

 −κi
2(1 + βpκi)

3
2

n−1∏
j=1
j 6=i

1√
1 + βpκj

− φ(−βp)
n−1∏
i=1

1√
1 + βpκi

∇dβcdf (5.6)

where ∇dκi has been neglected and βp ≥ 0 (see Section 1.1.2.2). Other approaches assume the curvature
correction is nearly independent of the design variables [54], which is equivalent to neglecting the first term in
Eq. 5.6.

To capture second-order probability estimates within an RIA RBDO formulation using well-behaved β con-
straints, a generalized reliability index can be introduced where, similar to Eq. 1.8,

β∗cdf = −Φ−1(pcdf ) (5.7)

for second-order pcdf . This reliability index is no longer equivalent to the magnitude of u, but rather is a con-
venience metric for capturing the effect of more accurate probability estimates. The corresponding generalized
reliability index sensitivity, similar to Eq. 5.5, is

∇dβ
∗
cdf = − 1

φ(−β∗cdf )
∇dpcdf (5.8)

where ∇dpcdf is defined from Eq. 5.6. Even when ∇dg is estimated numerically, Eqs. 5.3-5.8 can be used to
avoid numerical differencing across full reliability analyses.

When the design variables are distribution parameters of the uncertain variables, ∇dg is expanded with the chain
rule and Eqs. 5.3 and 5.4 become

∇dz = ∇dx∇xg (5.9)

∇dβcdf =
1

‖ ∇uG ‖
∇dx∇xg (5.10)

where the design Jacobian of the transformation (∇dx) may be obtained analytically for uncorrelated x or semi-
analytically for correlated x (∇dL is evaluated numerically) by differentiating Eqs. 1.13 and 1.14 with respect
to the distribution parameters. Eqs. 5.5-5.8 remain the same as before. For this design variable case, all required
information for the sensitivities is available from the MPP search.

Since Eqs. 5.3-5.10 are derived using the Karush-Kuhn-Tucker optimality conditions for a converged MPP, they
are appropriate for RBDO using AMV+, AMV2+, TANA, FORM, and SORM, but not for RBDO using MV-
FOSM, MVSOSM, AMV, or AMV2.
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5.1.2 Sequential/Surrogate-based RBDO

An alternative RBDO approach is the sequential approach, in which additional efficiency is sought through break-
ing the nested relationship of the MPP and design searches. The general concept is to iterate between optimization
and uncertainty quantification, updating the optimization goals based on the most recent probabilistic assessment
results. This update may be based on safety factors [72] or other approximations [19].

A particularly effective approach for updating the optimization goals is to use the p/β/z sensitivity analysis of
Eqs. 5.3-5.10 in combination with local surrogate models [79]. In [20] and [21], first-order and second-order
Taylor series approximations were employed within a trust-region model management framework [36] in order
to adaptively manage the extent of the approximations and ensure convergence of the RBDO process. Surrogate
models were used for both the objective function and the constraints, although the use of constraint surrogates
alone is sufficient to remove the nesting.

In particular, RIA trust-region surrogate-based RBDO employs surrogate models of f and p/β within a trust
region ∆k centered at dc. For first-order surrogates:

minimize f(dc) +∇df(dc)T (d− dc)
subject to β(dc) +∇dβ(dc)T (d− dc) ≥ β̄

or p(dc) +∇dp(dc)T (d− dc) ≤ p̄

‖ d− dc ‖∞ ≤ ∆k (5.11)

and for second-order surrogates:

minimize f(dc) +∇df(dc)T (d− dc) + 1
2 (d− dc)T∇2

df(dc)(d− dc)
subject to β(dc) +∇dβ(dc)T (d− dc) + 1

2 (d− dc)T∇2
dβ(dc)(d− dc) ≥ β̄

or p(dc) +∇dp(dc)T (d− dc) + 1
2 (d− dc)T∇2

dp(dc)(d− dc) ≤ p̄

‖ d− dc ‖∞ ≤ ∆k (5.12)

For PMA trust-region surrogate-based RBDO, surrogate models of f and z are employed within a trust region ∆k

centered at dc. For first-order surrogates:

minimize f(dc) +∇df(dc)T (d− dc)
subject to z(dc) +∇dz(dc)T (d− dc) ≥ z̄

‖ d− dc ‖∞ ≤ ∆k (5.13)

and for second-order surrogates:

minimize f(dc) +∇df(dc)T (d− dc) + 1
2 (d− dc)T∇2

df(dc)(d− dc)
subject to z(dc) +∇dz(dc)T (d− dc) + 1

2 (d− dc)T∇2
dz(dc)(d− dc) ≥ z̄

‖ d− dc ‖∞ ≤ ∆k (5.14)

where the sense of the z constraint may vary as described previously. The second-order information in Eqs. 5.12
and 5.14 will typically be approximated with quasi-Newton updates.

5.2 Stochastic Expansion-Based Design Optimization (SEBDO)

5.2.1 Stochastic Sensitivity Analysis

Section 2.10 describes sensitivity analysis of the polynomial chaos expansion with respect to the expansion vari-
ables. Here we extend this analysis to include sensitivity analysis of probabilistic moments with respect to non-
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probabilistic (i.e., design or epistemic uncertain) variables.

5.2.1.1 Local sensitivity analysis: first-order probabilistic expansions

With the introduction of nonprobabilistic variables s (for example, design variables or epistemic uncertain vari-
ables), a polynomial chaos expansion only over the probabilistic variables ξ has the functional relationship:

R(ξ, s) ∼=
P∑
j=0

αj(s)Ψj(ξ) (5.15)

For computing sensitivities of response mean and variance, the ij indices may be dropped from Eqs. 2.28 and 2.29,
simplifying to

µ(s) = α0(s), σ2(s) =
P∑
k=1

α2
k(s)〈Ψ2

k〉 (5.16)

Sensitivities of Eq. 5.16 with respect to the nonprobabilistic variables are as follows, where independence of s
and ξ is assumed:

dµ

ds
=

dα0

ds
= 〈dR

ds
〉 (5.17)

dσ2

ds
=

P∑
k=1

〈Ψ2
k〉
dα2

k

ds
= 2

P∑
k=1

αk〈
dR

ds
,Ψk〉 (5.18)

where
dαk
ds

=
〈dRds ,Ψk〉
〈Ψ2

k〉
(5.19)

has been used. Due to independence, the coefficients calculated in Eq. 5.19 may be interpreted as either the deriva-
tives of the expectations or the expectations of the derivatives, or more precisely, the nonprobabilistic sensitivities
of the chaos coefficients for the response expansion or the chaos coefficients of an expansion for the nonprob-
abilistic sensitivities of the response. The evaluation of integrals involving dR

ds extends the data requirements
for the PCE approach to include response sensitivities at each of the sampled points.The resulting expansions are
valid only for a particular set of nonprobabilistic variables and must be recalculated each time the nonprobabilistic
variables are modified.

Similarly for stochastic collocation,

R(ξ, s) ∼=
Np∑
k=1

rk(s)Lk(ξ) (5.20)

leads to

µ(s) =
Np∑
k=1

rk(s)wk, σ2(s) =
Np∑
k=1

r2k(s)wk − µ2(s) (5.21)

dµ

ds
=

Np∑
k=1

wk
drk
ds

(5.22)

dσ2

ds
=

Np∑
k=1

2wkrk
drk
ds

− 2µ
dµ

ds
=

Np∑
k=1

2wk(rk − µ)
drk
ds

(5.23)
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5.2.1.2 Local sensitivity analysis: zeroth-order combined expansions

Alternatively, a stochastic expansion can be formed over both ξ and s. Assuming a bounded design domain
sL ≤ s ≤ sU (with no implied probability content), a Legendre chaos basis would be appropriate for each of the
dimensions in s within a polynomial chaos expansion.

R(ξ, s) ∼=
P∑
j=0

αjΨj(ξ, s) (5.24)

In this case, design sensitivities for the mean and variance do not require response sensitivity data, but this comes
at the cost of forming the PCE over additional dimensions. For this combined variable expansion, the mean
and variance are evaluated by performing the expectations over only the probabilistic expansion variables, which
eliminates the polynomial dependence on ξ, leaving behind the desired polynomial dependence of the moments
on s:

µR(s) =
P∑
j=0

αj〈Ψj(ξ, s)〉ξ (5.25)

σ2
R(s) =

P∑
j=0

P∑
k=0

αjαk〈Ψj(ξ, s)Ψk(ξ, s)〉ξ − µ2
R(s) (5.26)

The remaining polynomials may then be differentiated with respect to s. In this approach, the combined PCE
is valid for the full design variable range (sL ≤ s ≤ sU ) and does not need to be updated for each change
in nonprobabilistic variables, although adaptive localization techniques (i.e., trust region model management ap-
proaches) can be employed when improved local accuracy of the sensitivities is required.

Similarly for stochastic collocation,

R(ξ, s) ∼=
Np∑
j=1

rjLj(ξ, s) (5.27)

leads to

µR(s) =
Np∑
j=1

rj〈Lj(ξ, s)〉ξ (5.28)

σ2
R(s) =

Np∑
j=1

Np∑
k=1

rjrk〈Lj(ξ, s)Lk(ξ, s)〉ξ − µ2
R(s) (5.29)

where the remaining polynomials not eliminated by the expectation over ξ are again differentiated with respect to
s.

5.2.1.3 Inputs and outputs

There are two types of nonprobabilistic variables for which sensitivities must be calculated: “augmented,” where
the nonprobabilistic variables are separate from and augment the probabilistic variables, and “inserted,” where the
nonprobabilistic variables define distribution parameters for the probabilistic variables. Any inserted nonproba-
bilistic variable sensitivities must be handled using Eqs. 5.17-5.18 and Eqs. 5.22-5.23 where dR

ds is calculated as
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dR
dx

dx
ds and dx

ds is the Jacobian of the variable transformation x = T−1(ξ) with respect to the inserted nonproba-
bilistic variables. In addition, parameterized polynomials (generalized Gauss-Laguerre, Jacobi, and numerically-
generated polynomials) may introduce a dΨ

ds or dLds dependence for inserted s that will introduce additional terms
in the sensitivity expressions.

While moment sensitivities directly enable robust design optimization and interval estimation formulations which
seek to control or bound response variance, control or bounding of reliability requires sensitivities of tail statis-
tics. In this work, the sensitivity of simple moment-based approximations to cumulative distribution function
(CDF) and complementary cumulative distribution function (CCDF) mappings (Eqs. 1.3–1.4) are employed for
this purpose, such that it is straightforward to form approximate design sensitivities of reliability index β (forward
reliability mapping z̄ → β) or response level z (inverse reliability mapping β̄ → z) from the moment design
sensitivities and the specified levels β̄ or z̄.

5.2.2 Optimization Formulations

Given the capability to compute analytic statistics of the response along with design sensitivities of these statistics,
DAKOTA supports bi-level, sequential, and multifidelity approaches for optimization under uncertainty (OUU).
The latter two approaches apply surrogate modeling approaches (data fits and multifidelity modeling) to the un-
certainty analysis and then apply trust region model management to the optimization process.

5.2.2.1 Bi-level SEBDO

The simplest and most direct approach is to employ these analytic statistics and their design derivatives from
Section 5.2.1 directly within an optimization loop. This approach is known as bi-level OUU, since there is an
inner level uncertainty analysis nested within an outer level optimization.

Consider the common reliability-based design example of a deterministic objective function with a reliability
constraint:

minimize f

subject to β ≥ β̄ (5.30)

where β is computed relative to a prescribed threshold response value z̄ (e.g., a failure threshold) and is con-
strained by a prescribed reliability level β̄ (minimum allowable reliability in the design), and is either a CDF or
CCDF index depending on the definition of the failure domain (i.e., defined from whether the associated failure
probability is cumulative, p(g ≤ z̄), or complementary cumulative, p(g > z̄)).

Another common example is robust design in which the constraint enforcing a reliability lower-bound has been
replaced with a constraint enforcing a variance upper-bound σ̄2 (maximum allowable variance in the design):

minimize f

subject to σ2 ≤ σ̄2 (5.31)

Solving these problems using a bi-level approach involves computing β and dβ
ds for Eq. 5.30 or σ2 and dσ2

ds
for Eq. 5.31 for each set of design variables s passed from the optimizer. This approach is supported for both
probabilistic and combined expansions using PCE and SC.
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5.2.2.2 Sequential/Surrogate-Based SEBDO

An alternative OUU approach is the sequential approach, in which additional efficiency is sought through breaking
the nested relationship of the UQ and optimization loops. The general concept is to iterate between optimization
and uncertainty quantification, updating the optimization goals based on the most recent uncertainty assessment
results. This approach is common with the reliability methods community, for which the updating strategy may
be based on safety factors [72] or other approximations [19].

A particularly effective approach for updating the optimization goals is to use data fit surrogate models, and
in particular, local Taylor series models allow direct insertion of stochastic sensitivity analysis capabilities. In
Ref. [20], first-order Taylor series approximations were explored, and in Ref. [21], second-order Taylor series
approximations are investigated. In both cases, a trust-region model management framework [23] is used to
adaptively manage the extent of the approximations and ensure convergence of the OUU process. Surrogate
models are used for both the objective and the constraint functions, although the use of surrogates is only required
for the functions containing statistical results; deterministic functions may remain explicit is desired.

In particular, trust-region surrogate-based optimization for reliability-based design employs surrogate models of
f and β within a trust region ∆k centered at sc:

minimize f(sc) +∇sf(sc)T (s− sc)
subject to β(sc) +∇sβ(sc)T (s− sc) ≥ β̄ (5.32)

‖ s− sc ‖∞ ≤ ∆k

and trust-region surrogate-based optimization for robust design employs surrogate models of f and σ2 within a
trust region ∆k centered at sc:

minimize f(sc) +∇sf(sc)T (s− sc)
subject to σ2(sc) +∇sσ

2(sc)T (s− sc) ≤ σ̄2 (5.33)
‖ s− sc ‖∞ ≤ ∆k

Second-order local surrogates may also be employed, where the Hessians are typically approximated from an ac-
cumulation of curvature information using quasi-Newton updates [50] such as Broyden-Fletcher-Goldfarb-Shanno
(BFGS, Eq. 1.41) or symmetric rank one (SR1, Eq. 1.42). The sequential approach is available for probabilistic
expansions using PCE and SC.

5.2.2.3 Multifidelity SEBDO

The multifidelity OUU approach is another trust-region surrogate-based approach. Instead of the surrogate UQ
model being a simple data fit (in particular, first-/second-order Taylor series model) of the truth UQ model results,
distinct UQ models of differing fidelity are now employed. This differing UQ fidelity could stem from the fidelity
of the underlying simulation model, the fidelity of the UQ algorithm, or both. In this section, we focus on
the fidelity of the UQ algorithm. For reliability methods, this could entail varying fidelity in approximating
assumptions (e.g., Mean Value for low fidelity, SORM for high fidelity), and for stochastic expansion methods, it
could involve differences in selected levels of p and h refinement.

Here, we define UQ fidelity as point-wise accuracy in the design space and take the high fidelity truth model
to be the probabilistic expansion PCE/SC model, with validity only at a single design point. The low fidelity
model, whose validity over the design space will be adaptively controlled, will be either the combined expansion
PCE/SC model, with validity over a range of design parameters, or the MVFOSM reliability method, with validity
only at a single design point. The combined expansion low fidelity approach will span the current trust region
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of the design space and will be reconstructed for each new trust region. Trust region adaptation will ensure that
the combined expansion approach remains sufficiently accurate for design purposes. By taking advantage of the
design space spanning, one can eliminate the cost of multiple low fidelity UQ analyses within the trust region, with
fallback to the greater accuracy and higher expense of the probabilistic expansion approach when needed. The
MVFOSM low fidelity approximation must be reformed for each change in design variables, but it only requires
a single evaluation of a response function and its derivative to approximate the response mean and variance from
the input mean and covariance (Eqs. 1.1–1.2) from which forward/inverse CDF/CCDF reliability mappings can
be generated using Eqs. 1.3–1.4. This is the least expensive UQ option, but its limited accuracy1 may dictate the
use of small trust regions, resulting in greater iterations to convergence. The expense of optimizing a combined
expansion, on the other hand, is not significantly less than that of optimizing the high fidelity UQ model, but
its representation of global trends should allow the use of larger trust regions, resulting in reduced iterations to
convergence. The design derivatives of each of the PCE/SC expansion models provide the necessary data to
correct the low fidelity model to first-order consistency with the high fidelity model at the center of each trust
region, ensuring convergence of the multifidelity optimization process to the high fidelity optimum. Design
derivatives of the MVFOSM statistics are currently evaluated numerically using forward finite differences.

Multifidelity optimization for reliability-based design can be formulated as:

minimize f(s)

subject to β̂hi(s) ≥ β̄ (5.34)
‖ s− sc ‖∞ ≤ ∆k

and multifidelity optimization for robust design can be formulated as:

minimize f(s)
subject to σ̂hi

2(s) ≤ σ̄2 (5.35)
‖ s− sc ‖∞ ≤ ∆k

where the deterministic objective function is not approximated and β̂hi and σ̂hi2 are the approximated high-fidelity
UQ results resulting from correction of the low-fidelity UQ results. In the case of an additive correction function:

β̂hi(s) = βlo(s) + αβ(s) (5.36)
σ̂hi

2(s) = σ2
lo(s) + ασ2(s) (5.37)

where correction functions α(s) enforcing first-order consistency [24] are typically employed. Quasi-second-
order correction functions [24] can also be employed, but care must be taken due to the different rates of curvature
accumulation between the low and high fidelity models. In particular, since the low fidelity model is evaluated
more frequently than the high fidelity model, it accumulates curvature information more quickly, such that enforc-
ing quasi-second-order consistency with the high fidelity model can be detrimental in the initial iterations of the
algorithm2. Instead, this consistency should only be enforced when sufficient high fidelity curvature information
has been accumulated (e.g., after n rank one updates).

1MVFOSM is exact for linear functions with Gaussian inputs, but quickly degrades for nonlinear and/or non-Gaussian.
2Analytic and numerical Hessians, when available, are instantaneous with no accumulation rate concerns.
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